a2 United States Patent

O’Hare et al.

US009465952B2

US 9,465,952 B2
*QOct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(65)

(60)

(60)

(1)

(52)

(58)

SYSTEMS AND METHODS FOR SECURE
MULTI-TENANT DATA STORAGE

Applicant: Security First Corp., Rancho Santa
Margarita, CA (US)

Mark S. O’Hare, Coto de Caza, CA
(US); Rick L. Orsini, Flower Mound,
TX (US); Matt Staker, Coto de Caza,
CA (US)

Security First Corp., Rancho Santa
Margarita, CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/659,008
Filed: Mar. 16, 2015
Prior Publication Data
US 2015/0186671 Al Jul. 2, 2015
Related U.S. Application Data

Continuation of application No. 13/973,637, filed on
Aug. 22, 2013, now Pat. No. 9,015,480, which is a
division of application No. 13/208,132, filed on Aug.
11, 2011, now Pat. No. 8,656,189.

Provisional application No. 61/372,742, filed on Aug.
11, 2010.

Inventors:

Assignee:

Notice:

Int. CL.
GO6F 21/62 (2013.01)
HO4L 9/08 (2006.01)
(Continued)
U.S. CL
CPC ... GO6F 21/6218 (2013.01); HO4L 9/085

(2013.01); HO4L 9/0894 (2013.01); HO4L 9/14
(2013.01); HO4L 9/3231 (2013.01); HO4L
9/3247 (2013.01); HO4L 9/3263 (2013.01)

Field of Classification Search
CPC ... GO6F 11/30; GOGF 21/24; GO6F 12/14

TRANSMIT £
BLURALITY OF

USPC ... 713/167, 193; 726/2; 707/691, 716,
380/247; 455/411; 705/52
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,073,209 A 6/2000 Bergsten
6,363,481 B1* 3/2002 Hardjono HO41 9/085
713/165
(Continued)
FOREIGN PATENT DOCUMENTS
WO WO 2010/057181 5/2010

OTHER PUBLICATIONS

Butler et al., “Privacy Preserving Web-Based Email,” Info. Systems
Security Lecture Notes in Computer Science; Springer, Berlin,
Germany, Jan. 1, 2006, pp. 116-131.

(Continued)

Primary Examiner — Thanhnga B Truong
(74) Attorney, Agent, or Firm — Ropes & Gray LLP

(57) ABSTRACT

Systems and methods are provided for transmitting data for
secure storage. For each of two or more data sets, a plurality
of shares are generated containing a distribution of data from
an encrypted version of the data set. The shares are then
stored in a shared memory device, wherein a data set may be
reconstructed from a threshold number of the associated
plurality of shares using an associated key. Also provided are
systems and methods for providing access to secured data.
A plurality of shares containing a distribution of data from
an encrypted version of a data set are stored in a memory
device. A client is provided with a virtual machine that
indicates the plurality of shares, and the capability to recon-
struct the data set from the plurality of shares using an
associated key.

14 Claims, 60 Drawing Sheets

o B0

US 9,465,952 B2
Page 2

(51) Int. CL

HO4L 9714
HO4L 9/32

(56)

7,206,250
7,523,278
7,694,298

7,779,128
7,882,200
8,069,153

8,151,333
8,195,951

8,266,438
8,397,084

8,677,086
8,712,966
8,886,705
2002/0180798

(2006.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

B2
B2
B2 *

B2
B2
B2 *

B2
B2 *

B2
B2 *

B2
Bl
Bl
Al

4/2007
4/2009
4/2010

8/2010
2/2011
112011

4/2012
6/2012

9/2012
3/2013

3/2014
4/2014
11/2014
12/2002

Groux
Thompson et al.
Goudocoevinnn GOGF 9/45537
703/24
Utard et al.
Sturrock et al.
Chanccooue. GOGF 17/30477
707/691
Zhu et al.
Spalkacccooveenen GOGF 21/34
380/281
Orsini et al.
Ranade GOGF 11/1453
705/52

Sardella et al.
Armorer et al.
Tewari et al.
Poor et al.

2005/0055579 Al 3/2005 Kanda et al.
2007/0177739 Al 82007 Ganguly et al.
2009/0198702 Al 8/2009 Novik et al.
2012/0166576 Al 6/2012 Orsini et al.

OTHER PUBLICATIONS

Ertaul et al., “ECC Based Threshold Cryptography for Secure Data
Forwarding and Secure Key Exchange in MANET (I),” Networking
2005. Networking Technologies, Services and Protocols; Perfor-
mance of Computer and Communication Networks; Mobile and
Wireless Communications Systems; vol. 3462, May 2, 2005, pp.
102-113.

International Search Report and Written Opinion dated Nov. 11,
2011, International Application No. PCT/US2011/047469.
International Search Report dated Feb. 10, 2012, International
Application No. PCT/US2011/047642.

Ogata et al., “Fault Tolerant Anonymous Channel,” Information and
Communications Security First Intl. Conference Proceedings, ICIS
’97, Beijing, China; Nov. 11-14, 1997 proceedings, vol. 1334/1997,
Jan. 1, 1997, XP55011055, DOIL: 10.1007/BFb0028500 ISBN:
978-3-54-063696-0, pp. 440-444.

* cited by examiner

U.S. Patent Oct. 11, 2016 Sheet 1 of 60 US 9,465,952 B2

P
L

:

g

Authentication
Dals

Vrust Eng

“w
i
i

25

1
;

1
s,

%
]
o3 S 1 "
= & | Lo
b o T
“"g JE TEEEER
b
':‘ ?Ij}'lﬁ

/ Communication

,.'"‘ &
v’.‘
o e
o~ Sen £
D e

H -m PP H
{ & N [H
N [i N
N R £ % ;
N = B i
v Ay e k]
5 0) 3
} B
i
i
N for T

g o,
s (2%
! “ % i
%\ 4} g
SR 5 S
,\VA e /r}'(._

US 9,465,952 B2

Sheet 2 of 60

Oct. 11, 2016

U.S. Patent

anbug
L3R OB

o,
.,
% /
o o, P .
./.r,.q ~ i o&
4 %
eieg
A8
. HORESNUSInY v # - mﬁwmﬂm .
o “ MONDREUELE
Aiopsodagg
;//‘.z \.\\ i
f»rs. (lc.l . \r\.\.\(:\\r\\.\\

sl 1604y

gL

H
B UOREILITILILOT
e

US 9,465,952 B2

Sheet 3 of 60

Oct. 11, 2016

U.S. Patent

€O

3B 5SRO 4

awmbug spgdesbodian o)«

- wasAy
R Bunzisdn

suBun UonESRUSUINY ¢

EN

Asousodan of

d IRR 4

&

e’
S
% ﬁ

HUT UBIIEDIUNLIIG) O 4

&

supuy uoposesuRl]

suiBug cudeiBoidAsn wiosg
auBug voReORUBINY Wl

RUL BOREHUNRIIG TS WIOS

US 9,465,952 B2

Sheet 4 of 60

Oct. 11, 2016

U.S. Patent

¥ ol

A LTy T
uoEsnUsYINY
N
SHE
e [.
Beg B12(]
upny Aoy
S S
5 k4 k4 k4
suBug sngdesBoydian oL %
Bl SH WA OL % suiBug LOnIESURE] WOl
suIBuL UCHEIBUBYINY Of 4 T8RS woishg Bugeindg 4 188 g auBug snydeiboid i wosy
.......... z auBUg UONESUBINY WoL
2HRI0IS SSRIN QL4
(] T Asopsodan

US 9,465,952 B2

Sheet 5 of 60

Oct. 11, 2016

U.S. Patent

BEIPCH
Sunouiessy vigg

" sapany jduwsly

puiBug UONDBSUBLY O} «

Asousodar 04 4

suibug cydeiboydiig of «

517

N SHRSLINSH
BINPOH
Buguds eieq _
. soypsedhion
516 ,
& uigysiyg . N
88 T Bugeasdg ’s
504
ASY| BIBALL
0i%

Asonsode Wodl

suibuy UOIORSURL] WO

US 9,465,952 B2

Sheet 6 of 60

Oct. 11, 2016

U.S. Patent

Asoysodag of 4

suibung -
UONIBSURI] Of

g "4
P sinpow Buygpuey suydesboidieg
528
washig >
EX &aai:ﬂ.ﬂ Buneredn S M
509
JNPORW P SMPoR
org | Dunquessy ﬁmm.... 19 Sunuds eleg
avz - auwBug siydeiboydiin

swbuy
UOHBOUBYINY Wosd

Aiousodad wold

SuBuy UOHDESURI] WO

US 9,465,952 B2

Sheet 7 of 60

Oct. 11, 2016

U.S. Patent

Fnnn

¥

FORPA. SERR oo

sy
ol i

auibuy i
supdeiBoidAes wicy @

guibug
HORERIIBLINTY WHY

#mabuy
UMOIETEBURL] WO

e

I

U.S. Patent Oct. 11, 2016

Sheet 8 of 60

S = Regeived
Bata

US 9,465,952 B2

800

805

.

Generale 810

Random
Number
A
Generate 825
B=RAXORE [

'

Generale

Handom %26

Number
&

i

enerate L
D=CXORS |

Distribute

U.S. Patent

Oct. 11, 2016

Sheet 9 of 60

.%

US 9,465,952 B2

“

Enrclmeant Sata Flow

Bend Hooeive B8 Action
Transmit Enroliment Authentication
; Oata {B) and the User I {80} Qb
User gfﬁii“;;ig; 172 lencrypled with the Public Key of | '
S the Authentication Engine {AE) as
{PUB_AE{UID,B)
TE AE Full |Forward Transmission
AE Deorypis and Spiits Forwarded
Data
The Xth , .
AE Degository (DX) Full [Store Respective Portion of Data
When Dightal Certificate Requested
Cryptographic o w3
FAY Engine (0E) Full [Reguest Key Generation
a5
CE Generates and Splits Koy
. - QgE
Transmit Reguest for Digital v
CE & Full conificate |
Certification 930
TE Authority {CA) 12 (Transmit Regusst
R S e
GA TE 12 [Transmit Digital Cortificats
TE User 1@ Transmit Rigitsi Certificate
T MY Full (Store Digits! Centificats
__ . 965
GE OX Full [Store Respsotive Portlon of Kay o

FIG. 8, Panel A

U.S. Patent

Oct. 11, 2016

Sheet 10 of 60

e
o
foect

N
4

Hegin

4

| S

Diotormine

E SE 8T e
Lertifioais Type

% 874
Doos User swn
Fes
PLE

this type of
Certificate?

. Soas U
WO e rtif

=
¥
AR0
Sl

Select Certificate Authority thaty .
fssues Cortificats or Oross-)
Cartified Certificate

i

¥

Certification Authority's
Authentication Reguirements?

Ooes Usar mest currant
f By

. 888
k3 s
Ugpdate User
Authentication
" U84
rifficate from
& Authority
o
k
o o 878

US 9,465,952 B2

s
o]
&y

Farform Action

U.S. Patent

0]

ct. 11, 2016

Sheet 11 of 60

US 9,465,952 B2

- 10080

Authentioald

el Qam Flona

SEND

350

1005 1 g

1010
wed Yerndor

Liger 142

ransmit TID and &
Public Key of the Al
{AE), as (PUR_AE{TID, B

Engine

Full

Forward transmizsion

Enroilment authentication data (B is
requested and gathered

1 CF:”:

Full

Transmits T, AR

AR Pyl

T2 and the porfion of
“W fa“ o data stored at
gt {BX) as (PU

B_AE(TID,

T,

the filled in AR

1055 |

Vendor Fall

T, Yes/MNo

...

Lsar

U.S. Patent

Oct. 11, 2016

Sheet 12 of 60

RECERE

S;gﬁ%ﬁj@ Data Flow
SEND S8L AUTION

nsaction ooours, sLoh as agreeing on

Tra
3 ey oy H}
User Veandor 142 a ,ﬁ(“i
sotion identificetion
Vendor Lser 172 sntication request
1 or message (M)
iton data (BYand a
e receivad by the
thared from Usar
sar T 12

AN

LA)

8 h ,,€~§‘

Gather anroliment au

Transaction Engine |

{(Tey

Transmits UID, TED, AR
the message (M)

5

Mass Sorage (ME)

The Xih Deposiory
{3

UID, TID

&E

Transmit the TID and the portion of the
authentication data stored &t Enroliment
{BX), as {(PUB_AR{TID, B

fransmitted o the AR

The original vendor messags s

AR

Full

Transmit hidd)

e
PN,
(0
SR v

AE assembles B, compares o B and
compares ik o B4}

Reguast for digial signaturs and 2
MEssage o e signed, for ¢ xwmiu the
gmsr* G m{){‘(,‘;,»c;

ar @L

he {/r} G-

T it the p@
: adwﬂ{i ing 1o the signing

G Keay cor

Ly

5..: [

assermbles kay and v;a;":rz

Transmit the digital signature {

(B of

-
e
93]

T

CE Al Full signing party
. 1 AE TE Full | T, fm-ﬂmd iy £ 4, B, and &
””””””””””””””””””” Ti& are Tl w:Nu and Sy, and
ust enging,
Yendor Full the m,wpt

1140

eng Jine's Privats

US 9,465,952 B2

U.S. Patent Oct. 11, 2016 Sheet 13 of 60 US 9,465,952 B2

,,,
]
&

Send Receive | 38L

Decryption

E:??C”}:;;if—‘u with the Pubiic K@v of the User
as PUB_USER{GYNGC)
Authenticate the User

AE CE Full Forward PUB_USER{GYNC 1o CE
AL D)4 Fulb WHD, TID

Transmit the TID and the portion of the 1

DX CE Fuit |Private Key as {(PUR_AE(MID, 59

KEY USERY

CE asserbles the Cryptographic Key and | 1420
decrypts the sync

TiD, the filled in AR including deorypled 1225
Syno

GE Al Full

AR ‘ TE Full Forwardto TE

. - Raguesting | o

Encryption
Requesting o , 5
APR TE 12 iRequest for Fublic Key of User T
Vendor ‘
TE ME Full Request Digilal Caertificats
MBS TE Full {Transmit Digital Certificate
e] 4 \is i o
TE Roquesting | yn I ppanenit Digital Certificat

APPNendor

US 9,465,952 B2

Sheet 14 of 60

Oct. 11, 2016

U.S. Patent

el Old

oosy

sunBusg _ auBug
gzeL’. | uonespusuny i Asonsodag . UORDESUBLE | ¢
oo fo ot e et e ;

aubug
AL uoneosnusyny

P suibBuy
Sﬁ\m | BOREIRUIENY

suibug

aubug
L LORTRSURLY

Asousodsg

suiBuy |
UGIDESUSL] |

swbusg

i uonesguUSYINY | 7 uonoesuBsy |
GOEL e S :
P ZEEL e ersr et LZeL

HU
UDIBDIUNUIINT)
W0

¥i 94

US 9,465,952 B2

Sheet 15 of 60

Oct. 11, 2016

SNPOK suibug , suBusg W
Asuepunpey & \,ﬁw uoRedUsIInY Asaysodag UDHDIESURIL _m .
0zyi

BNDOR

suibug auBuy
Asuspunpe

| uonrRTRUBINY UOHDBSURL], |

LN

/ UOHEIIUNLRUGS
i I

aubug
UGRRsRUIgNY

swibun
UCIoESUBL] |

Aioysodsg

oy

T B e S

4 4 .f,.

- N

L DI w\m subug Siousods subun

; Aouepunpey | RH O T H 4 UBRIBSURE] 0L

sovL-"

U.S. Patent

U.S. Patent Oct. 11, 2016 Sheet 16 of 60 US 9,465,952 B2

Redundancy
Fr@m A“g S MQdUEe
g To &4
From AZ. w Comparator ™ Transaction
" Enging
From A% -

U.S. Patent Oct. 11, 2016 Sheet 17 of 60 US 9,465,952 B2

Combine Reliability of Individual
Authentication Instances o
Froduce Authentication
Confidence Lavel

B V0 S S0 U U U0 UG U PR S |

1840
o ; ~.
E Fill in N
y Authentication Request J
)h\-\., /‘(:‘

1045
;._ A e ann s e me ann ma e e e any a wa mes has e vanvan van A caa e \—le\— S aas aas wam Ams ans aae a e ane ams eoe -
: L1600 i
L | A |
¢/ Receive Authentication Data
i i and Enrollment Data } i
1605
: 3
E Extract Data for Each
¢ 1 Authentication Instance Used ;
§ §
t {
! N 1830
u ¥ N
' | Generate Reliability Based on |_~1810 I
i Authentication Instance Select Neéitss;&;;;tggmmaimn
¢ Technigue !
4 :
1818 | ;
¥ i
Generate Reliabllity Based on YES E
Authentication instance Data t
and Circumstances | E
;
., L1820 N :
J , N, 1828)
i Generale a Reliability ~¥Was an Additionati ™ {
E for this Authentication b #{ Authentication he ;
' Instance ’\\\ instance Used? f/_.A-f" :
E 4 \,\\‘\\ - i
Lo ., - f
\,\/‘_‘o §
g ;
i t
ND !
~1638 :
¥ }
¢
1
{
H
t
i
§
i
i
{
{
:
t
i
4
¢
H

FiG. 16

U.S. Patent Oct. 11, 2016

o

105G

Siransaction Dnging Redeives,
| Ti and Complested
Y Authentication Regusest

E

t
H

£

s

. i

s

I

[Generate Heguired Trust Level
: Basad on Size/Risk of
Transaction Spaciisd in
Authentication Regquest

i S4T30
¥

Compare Reguired Trust Level
and Authentication
Gonfidence Lovel

. 1730

NS
\';\
(11
A
.
ST

i Authenticat
Confidence Level
e greater than Reauired -

S Trust Level?

.

-~

-

= 1740

Generate Passive
Authentication

................

Sheet 18 of 60

US 9,465,952 B2

SY7G0
SR
!"vf: \\\\
~~~~~~~~ » Porform Trust Arbitrage |
\\ ;
\




Oct. 11, 2016

U.S. Patent

Sheet 19 of 60 US 9,465,952 B2

L1088

~
A 1805 181D
~fs Further ™« | - Fe, NN
e : S | Generate Negative | [ Send Authentication
< Arbitrage  >-NO-w T ekentication  |™\ Result to Vendor J
"\,\‘ — -

.

o Permitted?

A

1830

Contact Vendor
{onfirm Required

CentactUserr | 4gog

Request Additional
Authentication and
Offer Insurance

|

Trust Level and
Offer Insuranee

.-1835

f

o
N

‘J,.J"“}
" Has Verdor M
< Adjusted Required »
o Frust Level? o

e

~
\\

S

>
o

A 1825

=g \".\\
o7 Has User
< Provided e
. Additional 7

.,

he N Data?
-~ el

'\T’”‘?
YES
4? o015
Senci New “\

% Authentication Bngin

S

1850

' Authentication Data to i
g/

e

vis 1730

£ Compare
{  Authentication ‘
\Confidence Level and
\?\\‘ie-c;guireci Trust Leve}/

N

~\,
hY

A
t
1

[

Pariod to Expire

Wait for Hesponss

X -840 Adiust
: o Authentication
e e Confidence Level
SNQ-T Was Insurancs T YESs!  and Regquired
o Purchased? o Trust Level Based
: AN on nsurance
T Pyrchased
e 1845

FiG. 18



US 9,465,952 B2

Sheet 20 of 60

Oct. 11, 2016

U.S. Patent

oesL-

QzeL

M43

SLEL~

8l Ol

auiBuz 1sndy Ag psubig
FBETT OF IDRU0T DIRMIGY

¥

{IODUBA
Ay paubig) oRaNOD 10

(6L ‘Aay BIRALIL S A0DUBA ysey pue {swBuy snig A
yuas soeauen 1o usey ubig paubicl idiena) saenay |
= GiBL
auniBug yenig Ag
tresn Ag peubig) weiung i pauBIg 10pUsA O] FORILOS
§0 ysey pue {subug Isniy i« IBARIC TASY BIBALIY §.488
Ag poulic) 11808y aAla08Y | B 4 AN He §.4850
YRIM IDBAUGT 40 yse ubig
i *
0Es51 sosq 50 awbuzg ysnig
% G} JOBRAOTY 30 USENM pUR
Gubl uopesguagny Aisp P18 UOIRBSHUSINY DUSE
P ; o
ewiBug Jsnsg . NGE L
o1 }senbay uoieEsnusUInY 2 mﬁwmmmmmm%w@@zm PIE(] UDHROUBLINY
PUE IDBIILOT IO YSRE puag e g ¥ AR OpaL DB IBIGTY
4 3661~ %
asmeubig senbay . \
DUE 138 0} JOBHUCT pURR # JRBLUOT MBIATY
%
‘ GPat -
SRHUOT SlRIsURD
—
i peuBln paABasy ” VLI 0 YSBR uW:mmm pusddyy 4 Lwejemitsiany senbey
; PUE UDIEMsny AL A DUE L0 BN
%
0isL G064
i obeg qopg sopusp uo
D06 SUHUD W0 13040 NG i

TEBUSE

BUBUI N7

TEET




U.S. Patent Oct. 11, 2016 Sheet 21 of 60 US 9,465,952 B2

~1085

L aann
: . ; PR AV
User Systom | Application %
\ i & 20460
RO W

Capl

4 | 2020 $

¥ kil i $
 SPM - Software ' . | Cryptagraphic

3 ‘ & ¢ &
2015 2080

TN NN

Trust Engine

FiG, 20



U.S. Patent

Oct. 11, 2016

Sheet 22 of 60

J Accass S
Jossssion /

Vs

Kay
hare 1

{
{8
§

share *

HUIFLQBEHAY
;g

Split dats
according o
zassion key

US 9,465,952 B2

Parser

kay 4;

Master /)

¥

¥

Generate
share 1 key N

Generate

Generale
share 3 kay

i share noke

Genarate

1 data with
share

2 data with
share
2 ;\v>

3 data with
shara

2,

{ ,
s } IS

é (¢ i {f

3 Ay L LA
¥ )
Encrypt share Encrypt share Encrypl share |

vy da? w'-i*a.
shiare




U.S. Patent

Oct. 11, 2016

Sheet 23 of 60

»Anz GRS wmaunf

master key [/

US 9,465,952 B2

Split data
z:-a-:;rdmg 0
session key

parser
aster

H
4
§
e
§

Pypsdecyy
daia

§ ED
share 3/ share
i

Genearate
sharg 1
Key

Encrypt
sharg 1
data wilh
shars 1

¥

Generate
share 2
SOV e
ke, 7 'T?E\

Enorypt
share 2
data with
share ¢

¥

sharg 3
Key

K

Generate

Encrypt
share 3
data with
share 3

key

\Generate] |
| sharen | |

sharen |
sdata with
| share n




U.S. Patent

Oct.

11, 2016

e Data to be parsed./,-:“‘f

Sheet 24 of 60

US 9,465,952 B2

/ Accsss [
/ Parser [
§ master key ‘
AAAAAAAAAAAAAAAAAAAA J g
Generate /S Session ;;‘
3 Sassion %f’ Master ;(ev /
S 1 Master /1o be secured /
J key . ¢
& 3
in*erms: cHary ,
! Key {(Parser Encr\z}a&data
i Master XOR $ . ‘
Sassion inierrkr;idaary
Master 2
v,:"l - . prere sy > ¥ ~
Session key / Sera ; v
managements transaction | TGEWE’??E
‘ \iD:/ Session | ransacion
\ o Key 3 ‘
v
Enorynt ¥ v
I 2t r 7 it e i v b
/T hccess a?c%?d?r?ti) | JAccess ?gtit Er\anslsaf_.t:?n.
/Intermediary /- v g [{ Parser f—a accorcing W
key / nlermediary MMiagater Koy Parser Masler
F A Jey T AT kay
e S
e { ~
Parsg 7 [
&l Ay —— 4 Y .
fEm‘;zstcd:’ Trans ;"Encwp’;czeﬁ* Tran% : / Em,rypfm:’
;’ dai@a / ID // data fom g / data ;”
§  share 1 ; share ",f;‘ share &/ share 2/ ! share 37 share 3
¥ ¥ ¥
ben&rate Generate Generate Generatle
share 1 share 2 share 3 share n
kay | kay ,Egﬁ kay key A
FA 'j & I'i::i h i ‘{\}i
N 5 ! : d 5 ,
=h:3 ¥ P fé 3 i { ki H ;‘{
Encrypt Encrypt [ Encrypt 1 Encrypt’
share 1 share 2 share 3 ¢ | share n
data with data with data with | | data with
share 1 share 2 share 3 share n
key key key key
3 ¥
/ Encrypted / Encrypted  J Rey f
J share 1 ;’ / share 3 18
/ (dataftrans D)/ J {dataftrans 10}/
2
¥ _ ¥
Qbfustate /Encrypted  / Key / Ercrypted [ Key /
/ share 2 LA ¢ sharen L3

/ / {dataitrans 1D)/ a

£ (dataftrans ED}



Sheet 25 of 60 US 9,465,952 B2

U.S. Patent Oct. 11, 2016

~"Data fo be parsed
s

¢ Access
) i
; Parser

Gensrate /  Session /
T £ £
: Sesasion g Master key &
; Master { iobe secured / 7
H key | { ;
{ o - ki
Intermediary
'
Key (Parser Em?ﬁ;data
Massézigig R c A ® Urtermediary
= ERCIYet QY
Master) Kay
{ S%smn key /Ere Y ¥
management{ transaction | TGeneratjte ‘
: { P 1 Transaction) ||
: S IO %essaan g
s \ ¥ i s
Y LO—- jﬁ
¥
2 H ? Qs + - 3
;‘ ACCESS ,f Spiit L_iata Split Lransgct;qn
im;:rmedmry “““““ " according to D according to
g { Intermeadiary Parser Master
I key J Kay

Farse

& ‘({-«—' £
; & ; T fe 3 j
FE uvrﬁo{fe Trans | wl Trans ; / Ewrfwaff; Trans //Encrypted; Trans |
/odata [ D ;‘ :’ D /) date [ D /4 daa [ 1D
/ share 1/ share 1/ ahdre 2/ share 3]/ share 3/ share 3f/ sharen ; sharen/
H KN ‘s‘ : < \r K
¥ X ¥ ¥
Generate Generate Generate Gensrats
share 1 share 2 share 3 share n
key | ! key key key
T H 3
§ ]
2 w i ¥ i w ; ¥ M
L / {4
Encrypt Encrypt Encrypt Encrypt
share 1 share 2 sharg 3 {1 share n
data with data with data with I data with
shareg 1 share 2 share 3 | | share n
key key key I . key
k ¥
J Encrypiad / Encrypted  / Xey ¢
,s‘ share 1 / share 3 fe
L (ddid t: ans ED‘; J dataftrans 10}/
B :

Obfuscate

v'[

A

/ " Encry ypled
sha*e 2
data/trans ED)

/ En
.’
t’

{ share n
(d?talizang ED)

crypted




US 9,465,952 B2

Sheet 26 of 60

Oct. 11, 2016

U.S. Patent

= ” T il ,.w . el e hw..\\, e prod P ol | et
1 j ] sl | |

peinuat; . PRIy

..npi > 4,u.-_.i \\m:\. > .A.HM.,(. . ‘\,mvuve
Eaarany ER T
sy yeis HELR
sy e JonEy iw ] MR ADIISS
cloass BanaeRg BRI

WY
HICIRIBN

STIOBAY
Bunmpieg

Bunexizy sebeusy
S HY 4y




U.S. Patent

Oct. 11, 2016

2500

Sheet 27 of 60

Storage Area

Portion of
Parsed Data

2508
2504
Token

2508

| Parsed Data

Portion of

FIG. 26

US 9,465,952 B2



U.S. Patent

Oct. 11, 2016 Sheet 28 of 60 US 9,465,952 B2

2600

Existing Systam

Storage
Davice

TIa04

Storage | Storage |
Device o Device |
B4 5604

FiG, 27



U.S. Patent Oct. 11, 2016 Sheet 29 of 60 US 9,465,952 B2

Recipient 710
—x
& \\‘
£ %
If \
£ )
N % =
/ 206
'8 N
5 va o
T AN
i \
r LY
'3 N\
£ \
; ’,l" L) " L 4 "\\
/i N Ny %
e N N,

e { o -
Soa, “Tu-f_",y\' — e i __‘.;?-‘.’-
_\\ ‘!4‘
‘\\ f?
‘\ *@ X @ ‘;’
kY ; 2706
N\ _ Fog
Y /
R 7
N i
N/
‘S J;
i/
2702 2700
Parser .- e
2704
Message |-
Sender

FiG. 28



U.S. Patent Oct. 11, 2016 Sheet 30 of 60 US 9,465,952 B2

.......................................

L 2808
......... N At ,\“ .
- i Nnan
N 2808
N /" i
( Network - N
) N ,-/r"k‘ “““““ -
.......... 2808
SRGG

Parser

A 2804
Mossage |

Sender

FIG. 29



US 9,465,952 B2

Sheet 31 of 60

Oct. 11, 2016

U.S. Patent

gL "84

5

G108

[ wnpuosey usey

Joyeisunn Aoy

sl08 | porapany taydin S

m\ OIRIBUBG

!
)

%,

w\. —

Ziop L ABGIUNN WOPURY ey

..

SRR RLASIRT

Q7O

IBBIBG VIR N0

MRS | | fsuspunpoy xwwwwwmg

RUIBYR

g P £

8008 7 RCaoN Pnoe

BB JBSIL] BIRLT BINDSY

0058 L

~, - .

.m Tﬁtﬁﬁmﬁ
giop | ORI SRARHE s pejuessy | gnon
., i v o o

fade) addniagiiay

o 3oy
S 8 e sy Eyen ey Yy
SWANE ,/,,/v/ﬂﬁ.zv”m,;u//w,




U.S. Patent Oct. 11, 2016 Sheet 32 of 60 US 9,465,952 B2

.
2

B
[ 53
o 0 e, ..
“ ™
ok o
=3
o .
% A
v
B

el

[y

SAppli

Secure Dats Parser
nal Calis

AFVWrapper Lay

I
H

Fute:

N
o
o3
‘ &
£ LS £ ST
ot
o S
SEIRN & ﬁ . &
L3 o O =
& B = e
® SR E R
H G w21 A [
g O e Bl el @
% %3 Loiwc! D
ok BE ERNEI S
& W P m 85 2 $2
T T & T Rt S
™ A
o 22 g 3Nl x
P 5 o a4 [ ]
8% |55 -
[ S e £3 )
=8
W
& " £y
< j froceet
e g
R
~ o
2] T 0
o & i 8 02
ng & b & R
- 8 e &4 b
8 238 5 = & & &
S BE e r L3 v £ ]
s > W3 B fon N N
¢ SE B oo g
S R P N
G %’; 5 o 5% 2ox a v N
s & 8 & & o
BOAR @ o3 £ ool
ot Rl
O S E % 3
S ¢ 2 & & £
pud
e i 5 = L N~
‘::\ ‘f::.‘ ‘&\S; \:s %\2 a f:;?} g \\\\\\\\\\\\\\\\\\\\\
© 8 = 8= T, Z
S8, 0 o ts s Y
R I S 8§ B B = o
R B AW m o2 e =
N S S i I N —~ R S &
Rl W P A& Q H e ry er
e N LN N e 14 5
el B §¥w Te Wz o i
= e R < D = H = £
IR ol &= @ P X n B
Fjyw * Do B S 1%
S8 = e ow R LS g
o &} i‘% ’;; oy L
=~ fend
X o

Y



US 9,465,952 B2

Sheet 33 of 60

Oct. 11, 2016

U.S. Patent

7 s Beungy .,N\
: Ay i

/ {adAy Aue) ..U._.w\

uvopdiouy

SHET IBUIDINE

TN

wioBly yseH X

x,
i
m

N

hY
H

hﬁmmhmﬁmmv hwv& ?\ /
¥oeqpasd eyl M i 4

.w\

| ASGIUNN WopURY

JOIRIBUBLY \s .

P

w.
| UONAGUISI
@IBYT

X WA

mmuggmsﬁmm

UORRSIT

SIBUS W

AT IDBIE ] BB} SINTBG

-~ GLDE
s

Liagng w1R0

Wﬁwmmﬁwmmﬁw wgcm

a00%

STA L Sieyng seseyg jupds
JOSIE S BIBG BIN0S : /
LRI 3 BIBLNY BUU0Y
SIS § SWBUBHI SRIBYS 1S peo Zep pudluo
pECE W UDIRLIUI e i
A SBIBYS JO UC[ESD| .| BIBUS[BUIRURIL ISD | 18nE S0
{ - L poppIRssy SILIAR
he seddeipiildy UG BoRULIOHIY ZOZE | uonesc) 24848 180 :

sadet uoneayddy

FELEL-
BIRE} 2INDIG HED

0075

DRIOLER
L Bg o) BIRD 10918G

wﬁmuwm {IDHIT  BRaY




US 9,465,952 B2

Sheet 34 of 60

Oct. 11, 2016

U.S. Patent

£ "DId

/oy S sieyg
BEIBL
yding

\\ N@ .\\va.w. Sy BIEYG
4 4 f esdEd
A nding

£ BIBYS /w4 ayr \\ 7 eleys
s 4 £ 5 | asked
wang % Lnding

s

. . s
¥y usepy (g ysu > g
A .,

A ¢ : /4 J i : .
YOEE . ¥/ /98 Y $08%
: R 1
7 w
Jvez; / A
7 S
A P
x\ v 7 ; J
Id
Aoy uoissey
L, / HIBGP2SS
~ saydin
: \ oy %
s
Aoy uoisseg
- DOEE
i may

Ui



US 9,465,952 B2

Sheet 35 of 60

Oct. 11, 2016

U.S. Patent

¥e Ol

S /8. F el

aaysey / ;
R vEd GOEE.

ADY UOIBERG

k4

&

£y uUOISSag

WIRIEGDBRL
HBYGED

R

/ A, |
—i Y tE mm &i}«za
PSS 4 s

g

g\-\w\ T
Gusey <y usery

S vy 7 pey /7 RIBUS Ty
4 1 BRiEy rverermren A esied

ndpeg g

'z mhmmm_ i memm
i RsdRd | asiRd |
nding | nding |




US 9,465,952 B2

Sheet 36 of 60

Oct. 11, 2016

U.S. Patent

JeTenne st s s 50 e
£ e . i
P .&u.u\ b \\\\ ........... o ¢ L BAPUR \,\
o gy e, gy e “ H g m“l .
Sy g
Brrrssssrsrirrssisssssssssssassssissd H E
H
..... e, R
7 ) : .
b “ & i g g
BEEUI 3G g
—
/ 7
¢ oy 7
SRR
g ] tH / /
Lrvarrirsrerersies,
S/ 7
4 s
o /
.ﬁﬁ \\ \Qm \
s /
4 e
v Ve
3 I
A T
b
\. L & \\
frenarnsasasrsins 5
J
: ;
: 7/
- - 7
H
™ / / :
y b : :
. : : :
", 5 ! \.m.\..w.& m,mﬁww»u«.;wﬂe
J : W% iB5aL
v b g 0% G A
b PR :
/ ; A 4
; :
H ;
H
! “
]
5
r
. 4
.,
™~ xm
f/.s. ;
TN 5
S Py
LAY LHEREY




US 9,465,952 B2

Sheet 37 of 60

Oct. 11, 2016

U.S. Patent

i

TS50

-G8 St
pue {052 =
YHE) UseH

08

L Sdid

_

gt "Oid

mmumm%mau

.

{Bupzug Jinag)

_wﬁmgw FETIDIAIRUY
{jpuondp)
wifisug 1sogd

%,

fasmeulig

mmwmmmm et FRINY
DRSOV BYINY BIRUS

I
BLOE" gy

{u 3o ui}

J138

& BUUBIBIO ] HPBS

F:3

{1810 § Y08
{ nidg g wiopuey)
SINGUISICE [ 9808y

b

G180 i
{Buueysg 1a0ag) o
~i ABw uDissey pdg m
HINGRL ABY
W ) &o E—
o 24

Aoy uoissag vondiioug

T IRUIsIY] BInoeg Ay

&
CETY

Q18-

LATy UOISSag
usidAIDUg JRUIBIYY
T TR )
Buppon 1o gy

u,mmzx

%

{158 uedn)

LAy uoissag
s waosussg

"mmwmm I© 957 261 STL-SAV} L.

Aasug-asg Aoy (RUIBHY

(957 'E61L
wrL) I8

}
o
™

Bupjion 40 4y
3

ng UoIERag
Hids (ONMIS D)
uoBieust Aay

hw\w&

AR mwwgwniiﬁﬂﬁxi

BRH

1055 AS JEMIFIRT WM ADu-

s

payddioug Asnoiadlg

; : _ Sdid 53V
NN )
Aoy unISHRg aangu:m ....................................
LIS (DNNASD) e (198 UadO)
uonRIsuan Asy 1 Hmmfmm.ﬁ‘
& AL
msi&x N m. o)
Lpaanbay ga;ﬂmbugm*
.
et LLGE ;
/ i W.M.wcmaﬁ.
Jyhisug e 95T 281
. -8 ADM [BUIBDT : mow JAT Y
& Sdid §3Y!
oy o
4 BIRE

1

{adA} Auy eieg jnduy )




US 9,465,952 B2

Sheet 38 of 60

Oct. 11, 2016

U.S. Patent

Zuis
sreudis i WS Noog A e pue uondAous LN BUIRURL (OF0 10
A ] SR U0 w /B LWUDPUBY f UDHAGLESICE A8 JUBUS T | W17 S5y uonsieunt Asy |
UCUBSRUBYINY SIRyL | SOUBISIO) MR mngusiyesied | iy Aay wassLEl iy

gie TR I T o zue” BLig
{ievondo) linua-a4g onic |
S RS BIRG S48
3048 h
. A :
S Qivy uondAisuy
bR Budosing sede ) droeg : oy
LIRS



US 9,465,952 B2

Sheet 39 of 60

Oct. 11, 2016

U.S. Patent

8y D4

ERIVYD

o e
- \\\ \.\ 7 .‘_u
o e i
2 e H
> v 11
o i
el e /
o \\\ 08E
T e e ) i
s e /
LT A e [ PUgE -
- g P
i E BIR} P
14 X, 1
: N [V
b e, e

.. o
QaZt PRI,

apag

Poae



US 9,465,952 B2

Sheet 40 of 60

Oct. 11, 2016

U.S. Patent

6t "Oid

-

7

jdg iR

oLEe

,. \ J— ,\..\

o .

e Aoy

s ﬁmﬁvm

o, -
AT g

8OGE

SRIRYG

yose~

e S
s e,

yd hmw‘m J.m/f
" uopdiioug)
~ peydiioug %4

e A 1N
Aoy dncaBwiops

%
Y

.W B T fvf::..f

' uondiioug

%, 1 (R B

N yondhiaug
. et

wopddiouy




US 9,465,952 B2

Sheet 41 of 60

Oct. 11, 2016

U.S. Patent

H0¥ "Oid

14

YOy "Oid

Aaw
nids ypm dlioug
ZLoy N
o ¥
i

aer i, L

{(ndg apueyg i)
Bupipug 191588

gooy - *

P L e

desan Aay g3y ¢

S
pooy %

LOIRIBUELY
Aoy ndg

200p



U.S. Patent Oct. 11, 2016 Sheet 42 of 60 US 9,465,952 B2

4104

19

a

A
FiG. 41

4108

4108

'/4102
Headsr




US 9,465,952 B2

Sheet 43 of 60

Oct. 11, 2016

U.S. Patent

TANI I E

pizy. OIS

JBBITS BIB{] SIN0HE

T T .

o \.\\\\ e,
\\\,\ )..c.(...
y -
Vs .,
S S unndues ™, o TN
Ve K BOUBULIILIBY | mmmgwm wieey ",
o S MBS " ) e,
. w\\. : o R Uy fwx S

-~ ;V,\\.. - et

rs s

h SEEITY QURBIIILIB G
1 HEMIBN " 0092y weEy

/ o eguen 7 Bunnduen” ™,

{ mum}.mmw ﬁwmm

.f

\ .
S o n@ ol P e

s, o, nre ™
P
. s

. /w...,. yd ORUCS 7
f.,...f m sfiviong mwmm\h i, 88830y
. . | SHOMIBN \

., S

e o~ e

.
.

Bogzy (| 001198 Bjeq
e e CEQELY  uoery ., S v p



US 9,465,952 B2

Sheet 44 of 60

Oct. 11, 2016

U.S. Patent

e¥ Oid

i8I BIR(Y BANG0Y

\ i S S,
o -~
wﬁww&mwwm A soreeocenssescoecioce « PBROIn Mt.wm
.A..f... } \..\ !
. ,.,.., - \\\\\ o \\\..
0L : :
gsey

IBpUBS

GOEY 7



US 9,465,952 B2

Sheet 45 of 60

Oct. 11, 2016

U.S. Patent

.............

Py D

IBAIBG
gleg

e T Ty log

nzry

P e AR e,

D8I

HHIDBG

Blye

DG

Goph



US 9,465,952 B2

Sheet 46 of 60

Oct. 11, 2016

U.S. Patent

,\\.\t&\ T ix}!ﬁt\:rr.}..:.fx
v\,\ .(..,...
/
I
,\\\t.l\,vx
o e
[/ abeiowg J sfiwag
/ T, hoooemg S

¥ "Old

035 washsg

18BIBG BIB( SIN08Y

.. #8G

e

3095Y

-

-

.(-.r}: . )\\.\,\
) 209Gy
5,
",
", .
“,, a

e, I

M e, e e,

; e N

05st

.. "

Ra ORISR ol

2OGSY



US 9,465,952 B2

Sheet 47 of 60

Oct. 11, 2016

U.S. Patent

g9 "old

RS I

m OAU0N w
| | 58800y |4
Popromen |
o i

ooy a8y

ged
BINDHG

SLav”

&

IBEN

o



US 9,465,952 B2

Sheet 48 of 60

Oct. 11, 2016

U.S. Patent

Ly "Old

1asg pugy

55,

Bunnduocn

FELIE

BIBG w&

% | BOUBLIIOLIS
: 1514 BINDBG
Dby oziy” oLiy”

...............................




US 9,465,952 B2

Sheet 49 of 60

Oct. 11, 2016

U.S. Patent

gy "Oid

3 1000

SULIOAA

Oty

Gy [BILUSLIBDUT

.

\\\\
v

Y

SAOPLUIAL



US 9,465,952 B2

Sheet 50 of 60

Oct. 11, 2016

U.S. Patent

05 24
0505 -
SIBB PUZ w&z&mﬁ%ﬁﬁmj

FELF LM

BAIDG iosiasadiy - ejeq simosg 4

1880

06 gras acas oLog <
ossr - G¥ "4
SIAS{} PUZ [#--10/PUY -
. 18818 g P .
IBARDE 4 pieG anoeg ¢ josiaiediy 4 iBEn
Ovey ouep nze oLeE




US 9,465,952 B2

LS "Dl

Sheet 51 of 60

Oct. 11, 2016

U.S. Patent

o WIOmysN | FELAT :
580y pug 4 W U :
05157 orig AT




U.S. Patent Oct. 11, 2016 Sheet 52 of 60 US 9,465,952 B2

Y
<O &
£ #
i =3
"'.‘ s
T
—
—
- £
v
& @
R
2. €
: 3
] | S
= o
Joox
8 123
w 8 8
i = ©
&3
5!
TR
<O
&
o4

....................



US 9,465,952 B2

Sheet 53 of 60

Oct. 11, 2016

U.S. Patent

es Ol

M 715G
S SHHYHE S0 ALTYHN
ONODIS 3LVHINGD

5%
3 LAANONT

u SHUYHS 40 | SENYHS wmwwzqm:.a wmwm
ALTTNM G HOYH 40 3uvHS] o W ONGDS
INO LSYIT LY IHOLS HEH SLVHENAD VLY EROUSSE ANE0RE

]
138
YAYQ GNODIS LdAHONS

Z0es
EE WAV LS AAREY

Eg ~"



US 9,465,952 B2

Sheet 54 of 60

Oct. 11, 2016

U.S. Patent

Qvvs

Lad
P

A

43
JOVHOLS GIIN8IELSIO

9FFS . PEPG,  IFPS.

A A B

Qs

taasY

abts % oees . OF .w\:

MEOMNMIE
ADYHSIS

2 A B

ATVHEOLS 43108 ELSIT

SPPE . bERS .

A A

SEPG . GFFS

27

SRt
FOVEOLE J3iN81HITIg

Ops

AT GiFg Sapd
H3A MHOALIEN INTNG LNVRNEL
FEvE Fivh BEFS
L WEAMES HOMLEN LNE'TD LNYNS
i : -
wers i (AR P FOPE
HUAAHIS | OAMOMIEZN INIITO INYNIE
FiFg GTFy FFEZY
HAAWDE MUOAMLIEN LNS0D INYNEL




US 9,465,952 B2

Sheet 55 of 60

Oct. 11, 2016

U.S. Patent

4% Old

GrEg
&

TEEG : wa n
AA T TINE e FAss] ;L
Qm o HEAHES 30V

ey
e

vmmo.?ﬁrwg %zwﬁo

FIGG
MUGAETR LNATD

AUDAEEN NGO




U.S. Patent Oct. 11, 2016 Sheet 56 of 60 US 9,465,952 B2

A
R
3.

&

~

5

IR ASSE

&
B4

0 & i~
¥ Iz oW o
; 5 ; & o :
& Gl o3 @
i b E;;:“ i 1 >
Oe e b M N
. - ]
7 g & 2
ad © =
., U ‘%\‘\ s Y 2
- {“ - o b % N
8 & S 0y AW

DISTRIBUTED STORAGE
5
DISTRIBUTED STORAGE

<
|
|

Fits 56

b = of g
- A age
Y o =
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, DX <8

=
SERVER

A

%
5

i\
3




US 9,465,952 B2

Sheet 57 of 60

Oct. 11, 2016

U.S. Patent

FOVHOLS QZANERLSIT

HIAUES

Bhiy

ALOMIEN INSTD

#LG

Deiy
FOVHGLE Q3ANERLS:IT

AOMILTIN
I A SRR

BPIG . wwih, TPiG. OWiG

A B 4N

reil
AUOMLER
HOYHCLES

GG
H3IAMIAT

T

MUOMLIN ININD

YUY
AMYRGL

JOVHOLS CZINGIMIsIa

aris

MHOMLIEN N3N0

fARR
LNYNIL




US 9,465,952 B2

Sheet 58 of 60

Oct. 11, 2016

U.S. Patent

8% Did

: SIYVHS 40 W
PALITYRIT I L8N S5 01N ;
AVHE INIHOYIN TYLEIA
HLAA INITD JAIA0Ed

f06% |
AT ONOOFS OL SSE00Y =
HUM NI 3OAOUE |

R

GORG

I

FOTHOLS M
404 STUYHS 0 ALMTWHN !
A 1S LmeNYYL

e

SEMYHE 40 ALMTvdid
L84 2EVHINED

AT LRMI ONISH
LAS VIV LSMId LdAHONS




US 9,465,952 B2

Sheet 59 of 60

Oct. 11, 2016

U.S. Patent

CGRINERLBIG

64 Did

LEENN

rranmxxmssesgessssssesmssEsnia

LG

ANTHD ASEND




US 9,465,952 B2

nres
JOUADS
VAT O

P 05
FOVHOLS

Wy : L

Sheet 60 of 60

Oct. 11, 2016

U.S. Patent

22 usia | IS : s

ATUNGS
YAYO ALVARLD

AHOMIEN
ADVHOLS
AVHNOS
YAV SivARG

] -
2 e S
S wanuas HIAEEE

24 e

HAAMES

2303
HA06N0s
YAVE LA

PLOT FO0G
Ged INIID

e FG
panie JEERSES

B0, TEE
SPNENT

o00g -~



US 9,465,952 B2

1
SYSTEMS AND METHODS FOR SECURE
MULTI-TENANT DATA STORAGE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/973,637 filed Aug. 22, 2013, currently
pending, which is a divisional of U.S. patent application Ser.
No. 13/208,132 filed Aug. 11, 2011, now U.S. Pat. No.
8,656,189, which claims the benefit of U.S. Provisional
Patent Application Ser. No. 61/372,742, filed Aug. 11, 2010,
now expired. Each of these prior applications is hereby
incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

The present invention relates in general to systems and
methods for secure multi-tenant data storage. The systems
and methods described herein may be used in conjunction
with other systems and methods described in commonly-
owned U.S. Pat. No. 7,391,865 and commonly-owned U.S.
patent application Ser. No. 11/258,839, filed Oct. 25, 2005,
Ser. No. 11/602,667, filed Nov. 20, 2006, Ser. No. 11/983,
355, filed Nov. 7, 2007, Ser. No. 11/999,575, filed Dec. 5,
2007, Ser. No. 12/148,365, filed Apr. 18, 2008, Ser. No.
12/209,703, filed Sep. 12, 2008, Ser. No. 12/349,897, filed
Jan. 7, 2009, Ser. No. 12/391,025, filed Feb. 23, 2009, Ser.
No. 12/783,276, filed May 19, 2010, Ser. No. 12/953,877,
filed Nov. 24, 2010, Ser. No. 13/077,770, filed Mar. 31,
2011, Ser. No. 13/077,802, filed Mar. 31, 2011, and Ser. No.
13/117,791, filed May 27, 2011 and U.S. Provisional Patent
Application Nos. 61/436,991, filed Jan. 27, 2011, 61/264,
464, filed Nov. 25, 2009, 61/319,658, filed Mar. 31, 2010,
61/320,242, filed Apr. 1, 2010, 61/349,560, filed May 28,
2010, 61/373,187, filed Aug. 12, 2010, 61/374,950, filed
Aug. 18, 2010, 61/384,583, filed Sep. 20, 2010. The disclo-
sures of each of the aforementioned, earlier-filed applica-
tions are hereby incorporated by reference herein in their
entireties.

SUMMARY

One or more embodiments relate generally to securely
storing and accessing data. One embodiment relates gener-
ally to a method for securely storing data in a multi-tenant
data storage system. A first data set from a first data source
and a second data set from a second data source are received.
The first data set is encrypted with a first key and the second
data set is encrypted with a second key, the second key
different from the first key. First and second pluralities of
shares are generated, wherein each of the first and second
plurality of shares contains a distribution of data from the
encrypted first and second data sets, respectively. At least
one share of the first plurality of shares and at least one share
of the second plurality of shares are stored in a first shared
memory device of the multi-tenant data storage system.
Access to the first key and a threshold number of the first
plurality of shares are necessary to restore the first data set.
Another embodiment relates generally to a system for
securely storing data in a multi-tenant data storage system,
including at least one processing device and a first shared
memory device.

Yet another embodiment relates generally to a method of
providing access to secured data. A first data set is encrypted
using a first key. A first plurality of shares is generated, such
that each of the first plurality of shares contains a distribu-

15

30

40

45

50

55

2

tion of data from the encrypted first data set. The first
plurality of shares is transmitted to at least one memory
device for storage. A first client is provided with access to a
second key and a virtual machine that indicates the first
plurality of shares stored on the at least one memory device.
The first client is provided with the capability to retrieve the
first plurality of shares from the at least one memory device
and reconstruct the first data set using the second key. A
further embodiment relates generally to a system for pro-
viding access to secured data, including at least one pro-
cessing device, a first client and at least one memory device

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described in more detail below in
connection with the attached drawings, which are meant to
illustrate and not to limit the invention, and in which:

FIG. 1 illustrates a block diagram of a cryptographic
system, according to aspects of an embodiment of the
invention;

FIG. 2 illustrates a block diagram of the trust engine of
FIG. 1, according to aspects of an embodiment of the
invention;

FIG. 3 illustrates a block diagram of the transaction
engine of FIG. 2, according to aspects of an embodiment of
the invention;

FIG. 4 illustrates a block diagram of the depository of
FIG. 2, according to aspects of an embodiment of the
invention;

FIG. 5 illustrates a block diagram of the authentication
engine of FIG. 2, according to aspects of an embodiment of
the invention;

FIG. 6 illustrates a block diagram of the cryptographic
engine of FIG. 2, according to aspects of an embodiment of
the invention;

FIG. 7 illustrates a block diagram of a depository system,
according to aspects of another embodiment of the inven-
tion;

FIG. 8 illustrates a flow chart of a data splitting process
according to aspects of an embodiment of the invention;

FIG. 9, Panel A illustrates a data flow of an enrollment
process according to aspects of an embodiment of the
invention;

FIG. 9, Panel B illustrates a flow chart of an interoper-
ability process according to aspects of an embodiment of the
invention;

FIG. 10 illustrates a data flow of an authentication process
according to aspects of an embodiment of the invention;

FIG. 11 illustrates a data flow of a signing process
according to aspects of an embodiment of the invention;

FIG. 12 illustrates a data flow and an encryption/decryp-
tion process according to aspects and yet another embodi-
ment of the invention;

FIG. 13 illustrates a simplified block diagram of a trust
engine system according to aspects of another embodiment
of the invention;

FIG. 14 illustrates a simplified block diagram of a trust
engine system according to aspects of another embodiment
of the invention;

FIG. 15 illustrates a block diagram of the redundancy
module of FIG. 14, according to aspects of an embodiment
of the invention;

FIG. 16 illustrates a process for evaluating authentications
according to one aspect of the invention;

FIG. 17 illustrates a process for assigning a value to an
authentication according to one aspect as shown in FIG. 16
of the invention;



US 9,465,952 B2

3

FIG. 18 illustrates a process for performing trust arbitrage
in an aspect of the invention as shown in FIG. 17; and

FIG. 19 illustrates a sample transaction between a user
and a vendor according to aspects of an embodiment of the
invention where an initial web based contact leads to a sales
contract signed by both parties.

FIG. 20 illustrates a sample user system with a crypto-
graphic service provider module which provides security
functions to a user system.

FIG. 21 illustrates a process for parsing, splitting and/or
separating data with encryption and storage of the encryp-
tion master key with the data.

FIG. 22 illustrates a process for parsing, splitting and/or
separating data with encryption and storing the encryption
master key separately from the data.

FIG. 23 illustrates the intermediary key process for pars-
ing, splitting and/or separating data with encryption and
storage of the encryption master key with the data.

FIG. 24 illustrates the intermediary key process for pars-
ing, splitting and/or separating data with encryption and
storing the encryption master key separately from the data.

FIG. 25 illustrates utilization of the cryptographic meth-
ods and systems of the present invention with a small
working group.

FIG. 26 is a block diagram of an illustrative physical
token security system employing the secure data parser in
accordance with one embodiment of the present invention.

FIG. 27 is a block diagram of an illustrative arrangement
in which the secure data parser is integrated into a system in
accordance with one embodiment of the present invention.

FIG. 28 is a block diagram of an illustrative data in motion
system in accordance with one embodiment of the present
invention.

FIG. 29 is a block diagram of another illustrative data in
motion system in accordance with one embodiment of the
present invention.

FIG. 30-32 are block diagrams of an illustrative system
having the secure data parser integrated in accordance with
one embodiment of the present invention.

FIG. 33 is a process flow diagram of an illustrative
process for parsing and splitting data in accordance with one
embodiment of the present invention.

FIG. 34 is a process flow diagram of an illustrative
process for restoring portions of data into original data in
accordance with one embodiment of the present invention.

FIG. 35 is a process flow diagram of an illustrative
process for splitting data at the bit level in accordance with
one embodiment of the present invention.

FIG. 36 is a process flow diagram of illustrative steps and
features, that may be used in any suitable combination, with
any suitable additions, deletions, or modifications in accor-
dance with one embodiment of the present invention.

FIG. 37 is a process flow diagram of illustrative steps and
features, that may be used in any suitable combination, with
any suitable additions, deletions, or modifications in accor-
dance with one embodiment of the present invention.

FIG. 38 is a simplified block diagram of the storage of key
and data components within shares, that may be used in any
suitable combination, with any suitable additions, deletions,
or modifications in accordance with one embodiment of the
present invention.

FIG. 39 is a simplified block diagram of the storage of key
and data components within shares using a workgroup key,
that may be used in any suitable combination, with any
suitable additions, deletions, or modifications in accordance
with one embodiment of the present invention.

10

15

20

25

30

40

45

55

60

65

4

FIGS. 40A and 40B are simplified and illustrative process
flow diagrams for header generation and data splitting for
data in motion, that may be used in any suitable combina-
tion, with any suitable additions, deletions, or modifications
in accordance with one embodiment of the present inven-
tion.

FIG. 41 is a simplified block diagram of an illustrative
share format, that may be used in any suitable combination,
with any suitable additions, deletions, or modifications in
accordance with one embodiment of the present invention.

FIG. 42 is a block diagram of an illustrative arrangement
in which the secure data parser is integrated into a system
connected to cloud computing resources in accordance with
one embodiment of the present invention.

FIG. 43 is a block diagram of an illustrative arrangement
in which the secure data parser is integrated into a system for
sending data through the cloud in accordance with one
embodiment of the present invention.

FIG. 44 is a block diagram of an illustrative arrangement
in which the secure data parser is used to secure data
services in the cloud in accordance with one embodiment of
the present invention.

FIG. 45 is a block diagram of an illustrative arrangement
in which the secure data parser is used to secure data storage
in the cloud in accordance with one embodiment of the
present invention.

FIG. 46 is a block diagram of an illustrative arrangement
in which the secure data parser is used to secure network
access control in accordance with one embodiment of the
present invention.

FIG. 47 is a block diagram of an illustrative arrangement
in which the secure data parser is used to secure high
performance computing resources in accordance with one
embodiment of the present invention.

FIG. 48 is a block diagram of an illustrative arrangement
in which the secure data parser is used to secure access using
virtual machines in accordance with one embodiment of the
present invention.

FIGS. 49 and 50 show block diagrams of alternative
illustrative arrangements for securing access using virtual
machines in accordance with embodiments of the present
invention.

FIG. 51 is a block diagram of an illustrative arrangement
in which the secure data parser is used to secure orthogonal
frequency-division multiplexing (OFDM) networks in
accordance with one embodiment of the present invention.

FIG. 52 is a block diagram of an illustrative arrangement
in which the secure data parser is used to secure the power
grid in accordance with one embodiment of the present
invention.

FIG. 53 is a process flow diagram of an illustrative
process for securely transmitting and storing data in accor-
dance with one embodiment of the present invention.

FIG. 54 is a block diagram of a secure multi-tenant
distribution system in accordance with one embodiment of
the present invention.

FIG. 55 is a block diagram of another secure multi-tenant
distribution system in accordance with one embodiment of
the present invention.

FIG. 56 is a block diagram of another secure multi-tenant
distribution system in accordance with one embodiment of
the present invention.

FIG. 57 is a block diagram of another secure multi-tenant
distribution system in accordance with one embodiment of
the present invention.



US 9,465,952 B2

5

FIG. 58 is a process flow diagram of an illustrative
process for providing access to secured data in accordance
with one embodiment of the present invention.

FIG. 59 is a block diagram of a secure collaborative work
environment in accordance with one embodiment of the
present invention.

FIG. 60 is a block diagram of another secure collaborative
work environment in accordance with one embodiment of
the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

One aspect of the present invention is to provide a
cryptographic system where one or more secure servers, or
a trust engine, stores cryptographic keys and user authenti-
cation data. Users access the functionality of conventional
cryptographic systems through network access to the trust
engine, however, the trust engine does not release actual
keys and other authentication data and therefore, the keys
and data remain secure. This server-centric storage of keys
and authentication data provides for user-independent secu-
rity, portability, availability, and straightforwardness.

Because users can be confident in, or trust, the crypto-
graphic system to perform user and document authentication
and other cryptographic functions, a wide variety of func-
tionality may be incorporated into the system. For example,
the trust engine provider can ensure against agreement
repudiation by, for example, authenticating the agreement
participants, digitally signing the agreement on behalf of or
for the participants, and storing a record of the agreement
digitally signed by each participant. In addition, the cryp-
tographic system may monitor agreements and determine to
apply varying degrees of authentication, based on, for
example, price, user, vendor, geographic location, place of
use, or the like.

To facilitate a complete understanding of the invention,
the remainder of the detailed description describes the
invention with reference to the figures, wherein like ele-
ments are referenced with like numerals throughout.

FIG. 1 illustrates a block diagram of a cryptographic
system 100, according to aspects of an embodiment of the
invention. As shown in FIG. 1, the cryptographic system 100
includes a user system 105, a trust engine 110, a certificate
authority 115, and a vendor system 120, communicating
through a communication link 125.

According to one embodiment of the invention, the user
system 105 comprises a conventional general-purpose com-
puter having one or more microprocessors, such as, for
example, an Intel-based processor. Moreover, the user sys-
tem 105 includes an appropriate operating system, such as,
for example, an operating system capable of including
graphics or windows, such as Windows, Unix, Linux, or the
like. As shown in FIG. 1, the user system 105 may include
a biometric device 107. The biometric device 107 may
advantageously capture a user’s biometric and transfer the
captured biometric to the trust engine 110. According to one
embodiment of the invention, the biometric device may
advantageously comprise a device having attributes and
features similar to those disclosed in U.S. patent application
Ser. No. 08/926,277, filed on Sep. 5, 1997, entitled “RELIEF
OBJECT IMAGE GENERATOR,” U.S. patent application
Ser. No. 09/558,634, filed on Apr. 26, 2000, entitled “IMAG-
ING DEVICE FOR A RELIEF OBJECT AND SYSTEM
AND METHOD OF USING THE IMAGE DEVICE,” U.S.
patent application Ser. No. 09/435,011, filed on Nov. 5,
1999, entitled “RELIEF OBJECT SENSOR ADAPTOR,”

10

15

20

25

30

35

40

45

50

55

60

65

6

and U.S. patent application Ser. No. 09/477,943, filed on
Jan. 5, 2000, entitled “PLANAR OPTICAL IMAGE SEN-
SOR AND SYSTEM FOR GENERATING AN ELEC-
TRONIC IMAGE OF A RELIEF OBJECT FOR FINGER-
PRINT READING,” all of which are owned by the instant
assignee, and all of which are hereby incorporated by
reference herein.

In addition, the user system 105 may connect to the
communication link 125 through a conventional service
provider, such as, for example, a dial up, digital subscriber
line (DSL), cable modem, fiber connection, or the like.
According to another embodiment, the user system 105
connects the communication link 125 through network con-
nectivity such as, for example, a local or wide area network.
According to one embodiment, the operating system
includes a TCP/IP stack that handles all incoming and
outgoing message traffic passed over the communication
link 125.

Although the user system 105 is disclosed with reference
to the foregoing embodiments, the invention is not intended
to be limited thereby. Rather, a skilled artisan will recognize
from the disclosure herein, a wide number of alternatives
embodiments of the user system 105, including almost any
computing device capable of sending or receiving informa-
tion from another computer system. For example, the user
system 105 may include, but is not limited to, a computer
workstation, an interactive television, an interactive kiosk, a
personal mobile computing device, such as a digital assis-
tant, mobile phone, laptop, or the like, a wireless commu-
nications device, a smartcard, an embedded computing
device, or the like, which can interact with the communi-
cation link 125. In such alternative systems, the operating
systems will likely differ and be adapted for the particular
device. However, according to one embodiment, the oper-
ating systems advantageously continue to provide the appro-
priate communications protocols needed to establish com-
munication with the communication link 125.

FIG. 1 illustrates the trust engine 110. According to one
embodiment, the trust engine 110 comprises one or more
secure servers for accessing and storing sensitive informa-
tion, which may be any type or form of data, such as, but not
limited to text, audio, video, user authentication data and
public and private cryptographic keys. According to one
embodiment, the authentication data includes data designed
to uniquely identify a user of the cryptographic system 100.
For example, the authentication data may include a user
identification number, one or more biometrics, and a series
of questions and answers generated by the trust engine 110
or the user, but answered initially by the user at enrollment.
The foregoing questions may include demographic data,
such as place of birth, address, anniversary, or the like,
personal data, such as mother’s maiden name, favorite ice
cream, or the like, or other data designed to uniquely identify
the user. The trust engine 110 compares a user’s authenti-
cation data associated with a current transaction, to the
authentication data provided at an earlier time, such as, for
example, during enrollment. The trust engine 110 may
advantageously require the user to produce the authentica-
tion data at the time of each transaction, or, the trust engine
110 may advantageously allow the user to periodically
produce authentication data, such as at the beginning of a
string of transactions or the logging onto a particular vendor
website.

According to the embodiment where the user produces
biometric data, the user provides a physical characteristic,
such as, but not limited to, facial scan, hand scan, ear scan,
iris scan, retinal scan, vascular pattern, DNA, a fingerprint,



US 9,465,952 B2

7

writing or speech, to the biometric device 107. The biomet-
ric device advantageously produces an electronic pattern, or
biometric, of the physical characteristic. The electronic
pattern is transferred through the user system 105 to the trust
engine 110 for either enrollment or authentication purposes.

Once the user produces the appropriate authentication
data and the trust engine 110 determines a positive match
between that authentication data (current authentication
data) and the authentication data provided at the time of
enrollment (enrollment authentication data), the trust engine
110 provides the user with complete cryptographic function-
ality. For example, the properly authenticated user may
advantageously employ the trust engine 110 to perform
hashing, digitally signing, encrypting and decrypting (often
together referred to only as encrypting), creating or distrib-
uting digital certificates, and the like. However, the private
cryptographic keys used in the cryptographic functions will
not be available outside the trust engine 110, thereby ensur-
ing the integrity of the cryptographic keys.

According to one embodiment, the trust engine 110 gen-
erates and stores cryptographic keys. According to another
embodiment, at least one cryptographic key is associated
with each user. Moreover, when the cryptographic keys
include public-key technology, each private key associated
with a user is generated within, and not released from, the
trust engine 110. Thus, so long as the user has access to the
trust engine 110, the user may perform cryptographic func-
tions using his or her private or public key. Such remote
access advantageously allows users to remain completely
mobile and access cryptographic functionality through prac-
tically any Internet connection, such as cellular and satellite
phones, kiosks, laptops, hotel rooms and the like.

According to another embodiment, the trust engine 110
performs the cryptographic functionality using a key pair
generated for the trust engine 110. According to this embodi-
ment, the trust engine 110 first authenticates the user, and
after the user has properly produced authentication data
matching the enrollment authentication data, the trust engine
110 uses its own cryptographic key pair to perform crypto-
graphic functions on behalf of the authenticated user.

A skilled artisan will recognize from the disclosure herein
that the cryptographic keys may advantageously include
some or all of symmetric keys, public keys, and private keys.
In addition, a skilled artisan will recognize from the disclo-
sure herein that the foregoing keys may be implemented
with a wide number of algorithms available from commer-
cial technologies, such as, for example, RSA, ELGAMAL,
or the like.

FIG. 1 also illustrates the certificate authority 115.
According to one embodiment, the certificate authority 115
may advantageously comprise a trusted third-party organi-
zation or company that issues digital certificates, such as, for
example, VeriSign, Baltimore, Entrust, or the like. The trust
engine 110 may advantageously transmit requests for digital
certificates, through one or more conventional digital cer-
tificate protocols, such as, for example, PKCS10, to the
certificate authority 115. In response, the certificate authority
115 will issue a digital certificate in one or more of a number
of differing protocols, such as, for example, PKCS7.
According to one embodiment of the invention, the trust
engine 110 requests digital certificates from several or all of
the prominent certificate authorities 115 such that the trust
engine 110 has access to a digital certificate corresponding
to the certificate standard of any requesting party.

According to another embodiment, the trust engine 110
internally performs certificate issuances. In this embodi-
ment, the trust engine 110 may access a certificate system for

10

15

20

25

30

35

40

45

50

55

60

65

8

generating certificates and/or may internally generate cer-
tificates when they are requested, such as, for example, at the
time of key generation or in the certificate standard
requested at the time of the request. The trust engine 110 will
be disclosed in greater detail below.

FIG. 1 also illustrates the vendor system 120. According
to one embodiment, the vendor system 120 advantageously
comprises a Web server. Typical Web servers generally serve
content over the Internet using one of several internet
markup languages or document format standards, such as
the Hyper-Text Markup Language (HTML) or the Exten-
sible Markup Language (XML). The Web server accepts
requests from browsers like Netscape and Internet Explorer
and then returns the appropriate electronic documents. A
number of server or client-side technologies can be used to
increase the power of the Web server beyond its ability to
deliver standard electronic documents. For example, these
technologies include Common Gateway Interface (CGI)
scripts, Secure Sockets Layer (SSL) security, and Active
Server Pages (ASPs). The vendor system 120 may advan-
tageously provide electronic content relating to commercial,
personal, educational, or other transactions.

Although the vendor system 120 is disclosed with refer-
ence to the foregoing embodiments, the invention is not
intended to be limited thereby. Rather, a skilled artisan will
recognize from the disclosure herein that the vendor system
120 may advantageously comprise any of the devices
described with reference to the user system 105 or combi-
nation thereof.

FIG. 1 also illustrates the communication link 125 con-
necting the user system 105, the trust engine 110, the
certificate authority 115, and the vendor system 120.
According to one embodiment, the communication link 125
preferably comprises the Internet. The Internet, as used
throughout this disclosure is a global network of computers.
The structure of the Internet, which is well known to those
of ordinary skill in the art, includes a network backbone with
networks branching from the backbone. These branches, in
turn, have networks branching from them, and so on. Rout-
ers move information packets between network levels, and
then from network to network, until the packet reaches the
neighborhood of its destination. From the destination, the
destination network’s host directs the information packet to
the appropriate terminal, or node. In one advantageous
embodiment, the Internet routing hubs comprise domain
name system (DNS) servers using Transmission Control
Protocol/Internet Protocol (TCP/IP) as is well known in the
art. The routing hubs connect to one or more other routing
hubs via high-speed communication links.

One popular part of the Internet is the World Wide Web.
The World Wide Web contains different computers, which
store documents capable of displaying graphical and textual
information. The computers that provide information on the
World Wide Web are typically called “websites.” A website
is defined by an Internet address that has an associated
electronic page. The electronic page can be identified by a
Uniform Resource Locator (URL). Generally, an electronic
page is a document that organizes the presentation of text,
graphical images, audio, video, and so forth.

Although the communication link 125 is disclosed in
terms of its preferred embodiment, one of ordinary skill in
the art will recognize from the disclosure herein that the
communication link 125 may include a wide range of
interactive communications links. For example, the commu-
nication link 125 may include interactive television net-
works, telephone networks, wireless data transmission sys-
tems, two-way cable systems, customized private or public



US 9,465,952 B2

9

computer networks, interactive kiosk networks, automatic
teller machine networks, direct links, satellite or cellular
networks, and the like.

FIG. 2 illustrates a block diagram of the trust engine 110
of FIG. 1 according to aspects of an embodiment of the
invention. As shown in FIG. 2, the trust engine 110 includes
a transaction engine 205, a depository 210, an authentication
engine 215, and a cryptographic engine 220. According to
one embodiment of the invention, the trust engine 110 also
includes mass storage 225. As further shown in FIG. 2, the
transaction engine 205 communicates with the depository
210, the authentication engine 215, and the cryptographic
engine 220, along with the mass storage 225. In addition, the
depository 210 communicates with the authentication
engine 215, the cryptographic engine 220, and the mass
storage 225. Moreover, the authentication engine 215 com-
municates with the cryptographic engine 220. According to
one embodiment of the invention, some or all of the fore-
going communications may advantageously comprise the
transmission of XML documents to IP addresses that cor-
respond to the receiving device. As mentioned in the fore-
going, XML documents advantageously allow designers to
create their own customized document tags, enabling the
definition, transmission, validation, and interpretation of
data between applications and between organizations. More-
over, some or all of the foregoing communications may
include conventional SSL technologies.

According to one embodiment, the transaction engine 205
comprises a data routing device, such as a conventional Web
server available from Netscape, Microsoft, Apache, or the
like. For example, the Web server may advantageously
receive incoming data from the communication link 125.
According to one embodiment of the invention, the incom-
ing data is addressed to a front-end security system for the
trust engine 110. For example, the front-end security system
may advantageously include a firewall, an intrusion detec-
tion system searching for known attack profiles, and/or a
virus scanner. After clearing the front-end security system,
the data is received by the transaction engine 205 and routed
to one of the depository 210, the authentication engine 215,
the cryptographic engine 220, and the mass storage 225. In
addition, the transaction engine 205 monitors incoming data
from the authentication engine 215 and cryptographic
engine 220, and routes the data to particular systems through
the communication link 125. For example, the transaction
engine 205 may advantageously route data to the user
system 105, the certificate authority 115, or the vendor
system 120.

According to one embodiment, the data is routed using
conventional HTTP routing techniques, such as, for
example, employing URLs or Uniform Resource Indicators
(URIs). URIs are similar to URLs, however, URIs typically
indicate the source of files or actions, such as, for example,
executables, scripts, and the like. Therefore, according to the
one embodiment, the user system 105, the certificate author-
ity 115, the vendor system 120, and the components of the
trust engine 210, advantageously include sufficient data
within communication URLs or URIs for the transaction
engine 205 to properly route data throughout the crypto-
graphic system.

Although the data routing is disclosed with reference to its
preferred embodiment, a skilled artisan will recognize a
wide number of possible data routing solutions or strategies.
For example, XML or other data packets may advanta-
geously be unpacked and recognized by their format, con-
tent, or the like, such that the transaction engine 205 may
properly route data throughout the trust engine 110. More-

10

15

20

25

30

35

40

45

50

55

60

65

10

over, a skilled artisan will recognize that the data routing
may advantageously be adapted to the data transfer proto-
cols conforming to particular network systems, such as, for
example, when the communication link 125 comprises a
local network.

According to yet another embodiment of the invention,
the transaction engine 205 includes conventional SSL
encryption technologies, such that the foregoing systems
may authenticate themselves, and vise-versa, with transac-
tion engine 205, during particular communications. As will
be used throughout this disclosure, the term “Y2 SSL” refers
to communications where a server but not necessarily the
client, is SSL authenticated, and the term “FULL SSL”
refers to communications where the client and the server are
SSL authenticated. When the instant disclosure uses the term
“SSL”, the communication may comprise %2 or FULL SSL.

As the transaction engine 205 routes data to the various
components of the cryptographic system 100, the transaction
engine 205 may advantageously create an audit trail.
According to one embodiment, the audit trail includes a
record of at least the type and format of data routed by the
transaction engine 205 throughout the cryptographic system
100. Such audit data may advantageously be stored in the
mass storage 225.

FIG. 2 also illustrates the depository 210. According to
one embodiment, the depository 210 comprises one or more
data storage facilities, such as, for example, a directory
server, a database server, or the like. As shown in FIG. 2, the
depository 210 stores cryptographic keys and enrollment
authentication data. The cryptographic keys may advanta-
geously correspond to the trust engine 110 or to users of the
cryptographic system 100, such as the user or vendor. The
enrollment authentication data may advantageously include
data designed to uniquely identify a user, such as, user ID,
passwords, answers to questions, biometric data, or the like.
This enrollment authentication data may advantageously be
acquired at enrollment of a user or another alternative later
time. For example, the trust engine 110 may include periodic
or other renewal or reissue of enrollment authentication data.

According to one embodiment, the communication from
the transaction engine 205 to and from the authentication
engine 215 and the cryptographic engine 220 comprises
secure communication, such as, for example conventional
SSL technology. In addition, as mentioned in the foregoing,
the data of the communications to and from the depository
210 may be transterred using URLs, URIs, HTTP or XML
documents, with any of the foregoing advantageously hav-
ing data requests and formats embedded therein.

As mentioned above, the depository 210 may advanta-
geously comprises a plurality of secure data storage facili-
ties. In such an embodiment, the secure data storage facili-
ties may be configured such that a compromise of the
security in one individual data storage facility will not
compromise the cryptographic keys or the authentication
data stored therein. For example, according to this embodi-
ment, the cryptographic keys and the authentication data are
mathematically operated on so as to statistically and sub-
stantially randomize the data stored in each data storage
facility. According to one embodiment, the randomization of
the data of an individual data storage facility renders that
data undecipherable. Thus, compromise of an individual
data storage facility produces only a randomized undeci-
pherable number and does not compromise the security of
any cryptographic keys or the authentication data as a whole.

FIG. 2 also illustrates the trust engine 110 including the
authentication engine 215. According to one embodiment,
the authentication engine 215 comprises a data comparator



US 9,465,952 B2

11

configured to compare data from the transaction engine 205
with data from the depository 210. For example, during
authentication, a user supplies current authentication data to
the trust engine 110 such that the transaction engine 205
receives the current authentication data. As mentioned in the
foregoing, the transaction engine 205 recognizes the data
requests, preferably in the URL or URI, and routes the
authentication data to the authentication engine 215. More-
over, upon request, the depository 210 forwards enrollment
authentication data corresponding to the user to the authen-
tication engine 215. Thus, the authentication engine 215 has
both the current authentication data and the enrollment
authentication data for comparison.

According to one embodiment, the communications to the
authentication engine comprise secure communications,
such as, for example, SSL technology. Additionally, security
can be provided within the trust engine 110 components,
such as, for example, super-encryption using public key
technologies. For example, according to one embodiment,
the user encrypts the current authentication data with the
public key of the authentication engine 215. In addition, the
depository 210 also encrypts the enrollment authentication
data with the public key of the authentication engine 215. In
this way, only the authentication engine’s private key can be
used to decrypt the transmissions.

As shown in FIG. 2, the trust engine 110 also includes the
cryptographic engine 220. According to one embodiment,
the cryptographic engine comprises a cryptographic han-
dling module, configured to advantageously provide con-
ventional cryptographic functions, such as, for example,
public-key infrastructure (PKI) functionality. For example,
the cryptographic engine 220 may advantageously issue
public and private keys for users of the cryptographic system
100. In this manner, the cryptographic keys are generated at
the cryptographic engine 220 and forwarded to the deposi-
tory 210 such that at least the private cryptographic keys are
not available outside of the trust engine 110. According to
another embodiment, the cryptographic engine 220 random-
izes and splits at least the private cryptographic key data,
thereby storing only the randomized split data. Similar to the
splitting of the enrollment authentication data, the splitting
process ensures the stored keys are not available outside the
cryptographic engine 220. According to another embodi-
ment, the functions of the cryptographic engine can be
combined with and performed by the authentication engine
215.

According to one embodiment, communications to and
from the cryptographic engine include secure communica-
tions, such as SSL technology. In addition, XML documents
may advantageously be employed to transfer data and/or
make cryptographic function requests.

FIG. 2 also illustrates the trust engine 110 having the mass
storage 225. As mentioned in the foregoing, the transaction
engine 205 keeps data corresponding to an audit trail and
stores such data in the mass storage 225. Similarly, accord-
ing to one embodiment of the invention, the depository 210
keeps data corresponding to an audit trail and stores such
data in the mass storage device 225. The depository audit
trail data is similar to that of the transaction engine 205 in
that the audit trail data comprises a record of the requests
received by the depository 210 and the response thereof. In
addition, the mass storage 225 may be used to store digital
certificates having the public key of a user contained therein.

Although the trust engine 110 is disclosed with reference
to its preferred and alternative embodiments, the invention
is not intended to be limited thereby. Rather, a skilled artisan
will recognize in the disclosure herein, a wide number of

20

25

30

40

45

12

alternatives for the trust engine 110. For example, the trust
engine 110, may advantageously perform only authentica-
tion, or alternatively, only some or all of the cryptographic
functions, such as data encryption and decryption. Accord-
ing to such embodiments, one of the authentication engine
215 and the cryptographic engine 220 may advantageously
be removed, thereby creating a more straightforward design
for the trust engine 110. In addition, the cryptographic
engine 220 may also communicate with a certificate author-
ity such that the certificate authority is embodied within the
trust engine 110. According to yet another embodiment, the
trust engine 110 may advantageously perform authentication
and one or more cryptographic functions, such as, for
example, digital signing.

FIG. 3 illustrates a block diagram of the transaction
engine 205 of FIG. 2, according to aspects of an embodiment
of the invention. According to this embodiment, the trans-
action engine 205 comprises an operating system 305 having
a handling thread and a listening thread. The operating
system 305 may advantageously be similar to those found in
conventional high volume servers, such as, for example,
Web servers available from Apache. The listening thread
monitors the incoming communication from one of the
communication link 125, the authentication engine 215, and
the cryptographic engine 220 for incoming data flow. The
handling thread recognizes particular data structures of the
incoming data flow, such as, for example, the foregoing data
structures, thereby routing the incoming data to one of the
communication link 125, the depository 210, the authenti-
cation engine 215, the cryptographic engine 220, or the mass
storage 225. As shown in FIG. 3, the incoming and outgoing
data may advantageously be secured through, for example,
SSL technology.

FIG. 4 illustrates a block diagram of the depository 210 of
FIG. 2 according to aspects of an embodiment of the
invention. According to this embodiment, the depository
210 comprises one or more lightweight directory access
protocol (LDAP) servers. LDAP directory servers are avail-
able from a wide variety of manufacturers such as Netscape,
ISO, and others. FIG. 4 also shows that the directory server
preferably stores data 405 corresponding to the crypto-
graphic keys and data 410 corresponding to the enrollment
authentication data. According to one embodiment, the
depository 210 comprises a single logical memory structure
indexing authentication data and cryptographic key data to
a unique user ID. The single logical memory structure
preferably includes mechanisms to ensure a high degree of
trust, or security, in the data stored therein. For example, the
physical location of the depository 210 may advantageously
include a wide number of conventional security measures,
such as limited employee access, modern surveillance sys-
tems, and the like. In addition to, or in lieu of; the physical
securities, the computer system or server may advanta-
geously include software solutions to protect the stored data.
For example, the depository 210 may advantageously create
and store data 415 corresponding to an audit trail of actions
taken. In addition, the incoming and outgoing communica-
tions may advantageously be encrypted with public key
encryption coupled with conventional SSL. technologies.

According to another embodiment, the depository 210
may comprise distinct and physically separated data storage
facilities, as disclosed further with reference to FIG. 7.

FIG. 5 illustrates a block diagram of the authentication
engine 215 of FIG. 2 according to aspects of an embodiment
of the invention. Similar to the transaction engine 205 of
FIG. 3, the authentication engine 215 comprises an operat-
ing system 505 having at least a listening and a handling



US 9,465,952 B2

13

thread of a modified version of a conventional Web server,
such as, for example, Web servers available from Apache. As
shown in FIG. 5, the authentication engine 215 includes
access to at least one private key 510. The private key 510
may advantageously be used for example, to decrypt data
from the transaction engine 205 or the depository 210, which
was encrypted with a corresponding public key of the
authentication engine 215.

FIG. 5 also illustrates the authentication engine 215
comprising a comparator 515, a data splitting module 520,
and a data assembling module 525. According to the pre-
ferred embodiment of the invention, the comparator 515
includes technology capable of comparing potentially com-
plex patterns related to the foregoing biometric authentica-
tion data. The technology may include hardware, software,
or combined solutions for pattern comparisons, such as, for
example, those representing finger print patterns or voice
patterns. In addition, according to one embodiment, the
comparator 515 of the authentication engine 215 may advan-
tageously compare conventional hashes of documents in
order to render a comparison result. According to one
embodiment of the invention, the comparator 515 includes
the application of heuristics 530 to the comparison. The
heuristics 530 may advantageously address circumstances
surrounding an authentication attempt, such as, for example,
the time of day, IP address or subnet mask, purchasing
profile, email address, processor serial number or ID, or the
like.

Moreover, the nature of biometric data comparisons may
result in varying degrees of confidence being produced from
the matching of current biometric authentication data to
enrollment data. For example, unlike a traditional password
which may only return a positive or negative match, a
fingerprint may be determined to be a partial match, e.g. a
90% match, a 75% match, or a 10% match, rather than
simply being correct or incorrect. Other biometric identifiers
such as voice print analysis or face recognition may share
this property of probabilistic authentication, rather than
absolute authentication.

When working with such probabilistic authentication or in
other cases where an authentication is considered less than
absolutely reliable, it is desirable to apply the heuristics 530
to determine whether the level of confidence in the authen-
tication provided is sufficiently high to authenticate the
transaction which is being made.

It will sometimes be the case that the transaction at issue
is a relatively low value transaction where it is acceptable to
be authenticated to a lower level of confidence. This could
include a transaction which has a low dollar value associated
with it (e.g., a $10 purchase) or a transaction with low risk
(e.g., admission to a members-only web site).

Conversely, for authenticating other transactions, it may
be desirable to require a high degree of confidence in the
authentication before allowing the transaction to proceed.
Such transactions may include transactions of large dollar
value (e.g., signing a multi-million dollar supply contract) or
transaction with a high risk if an improper authentication
occurs (e.g., remotely logging onto a government computer).

The use of the heuristics 530 in combination with confi-
dence levels and transactions values may be used as will be
described below to allow the comparator to provide a
dynamic context-sensitive authentication system.

According to another embodiment of the invention, the
comparator 515 may advantageously track authentication
attempts for a particular transaction. For example, when a
transaction fails, the trust engine 110 may request the user to
re-enter his or her current authentication data. The compara-

10

15

20

25

30

35

40

45

50

55

60

65

14

tor 515 of the authentication engine 215 may advanta-
geously employ an attempt limiter 535 to limit the number
of authentication attempts, thereby prohibiting brute-force
attempts to impersonate a user’s authentication data.
According to one embodiment, the attempt limiter 535
comprises a software module monitoring transactions for
repeating authentication attempts and, for example, limiting
the authentication attempts for a given transaction to three.
Thus, the attempt limiter 535 will limit an automated attempt
to impersonate an individual’s authentication data to, for
example, simply three “guesses.” Upon three failures, the
attempt limiter 535 may advantageously deny additional
authentication attempts. Such denial may advantageously be
implemented through, for example, the comparator 515
returning a negative result regardless of the current authen-
tication data being transmitted. On the other hand, the
transaction engine 205 may advantageously block any addi-
tional authentication attempts pertaining to a transaction in
which three attempts have previously failed.

The authentication engine 215 also includes the data
splitting module 520 and the data assembling module 525.
The data splitting module 520 advantageously comprises a
software, hardware, or combination module having the
ability to mathematically operate on various data so as to
substantially randomize and split the data into portions.
According to one embodiment, original data is not recreat-
able from an individual portion. The data assembling mod-
ule 525 advantageously comprises a software, hardware, or
combination module configured to mathematically operate
on the foregoing substantially randomized portions, such
that the combination thereof provides the original deci-
phered data. According to one embodiment, the authentica-
tion engine 215 employs the data splitting module 520 to
randomize and split enrollment authentication data into
portions, and employs the data assembling module 525 to
reassemble the portions into usable enrollment authentica-
tion data.

FIG. 6 illustrates a block diagram of the cryptographic
engine 220 of the trust engine 200 of FIG. 2 according to
aspects of one embodiment of the invention. Similar to the
transaction engine 205 of FIG. 3, the cryptographic engine
220 comprises an operating system 605 having at least a
listening and a handling thread of a modified version of a
conventional Web server, such as, for example, Web servers
available from Apache. As shown in FIG. 6, the crypto-
graphic engine 220 comprises a data splitting module 610
and a data assembling module 620 that function similar to
those of FIG. 5. However, according to one embodiment, the
data splitting module 610 and the data assembling module
620 process cryptographic key data, as opposed to the
foregoing enrollment authentication data. Although, a
skilled artisan will recognize from the disclosure herein that
the data splitting module 910 and the data splitting module
620 may be combined with those of the authentication
engine 215.

The cryptographic engine 220 also comprises a crypto-
graphic handling module 625 configured to perform one,
some or all of a wide number of cryptographic functions.
According to one embodiment, the cryptographic handling
module 625 may comprise software modules or programs,
hardware, or both. According to another embodiment, the
cryptographic handling module 625 may perform data com-
parisons, data parsing, data splitting, data separating, data
hashing, data encryption or decryption, digital signature
verification or creation, digital certificate generation, stor-
age, or requests, cryptographic key generation, or the like.
Moreover, a skilled artisan will recognize from the disclo-



US 9,465,952 B2

15

sure herein that the cryptographic handling module 825 may
advantageously comprises a public-key infrastructure, such
as Pretty Good Privacy (PGP), an RSA-based public-key
system, or a wide number of alternative key management
systems. In addition, the cryptographic handling module 625
may perform public-key encryption, symmetric-key encryp-
tion, or both. In addition to the foregoing, the cryptographic
handling module 625 may include one or more computer
programs or modules, hardware, or both, for implementing
seamless, transparent, interoperability functions.

A skilled artisan will also recognize from the disclosure
herein that the cryptographic functionality may include a
wide number or variety of functions generally relating to
cryptographic key management systems.

FIG. 7 illustrates a simplified block diagram of a deposi-
tory system 700 according to aspects of an embodiment of
the invention. As shown in FIG. 7, the depository system
700 advantageously comprises multiple data storage facili-
ties, for example, data storage facilities D1, D2, D3, and D4.
However, it is readily understood by those of ordinary skill
in the art that the depository system may have only one data
storage facility. According to one embodiment of the inven-
tion, each of the data storage facilities D1 through D4 may
advantageously comprise some or all of the elements dis-
closed with reference to the depository 210 of FIG. 4.
Similar to the depository 210, the data storage facilities D1
through D4 communicate with the transaction engine 205,
the authentication engine 215, and the cryptographic engine
220, preferably through conventional SSL. Communication
links transferring, for example, XML documents. Commu-
nications from the transaction engine 205 may advanta-
geously include requests for data, wherein the request is
advantageously broadcast to the IP address of each data
storage facility D1 through D4. On the other hand, the
transaction engine 205 may broadcast requests to particular
data storage facilities based on a wide number of criteria,
such as, for example, response time, server loads, mainte-
nance schedules, or the like.

In response to requests for data from the transaction
engine 205, the depository system 700 advantageously for-
wards stored data to the authentication engine 215 and the
cryptographic engine 220. The respective data assembling
modules receive the forwarded data and assemble the data
into useable formats. On the other hand, communications
from the authentication engine 215 and the cryptographic
engine 220 to the data storage facilities D1 through D4 may
include the transmission of sensitive data to be stored. For
example, according to one embodiment, the authentication
engine 215 and the cryptographic engine 220 may advan-
tageously employ their respective data splitting modules to
divide sensitive data into undecipherable portions, and then
transmit one or more undecipherable portions of the sensi-
tive data to a particular data storage facility.

According to one embodiment, each data storage facility,
D1 through D4, comprises a separate and independent
storage system, such as, for example, a directory server.
According to another embodiment of the invention, the
depository system 700 comprises multiple geographically
separated independent data storage systems. By distributing
the sensitive data into distinct and independent storage
facilities D1 through D4, some or all of which may be
advantageously geographically separated, the depository
system 700 provides redundancy along with additional secu-
rity measures. For example, according to one embodiment,
only data from two of the multiple data storage facilities, D1
through D4, are needed to decipher and reassemble the
sensitive data. Thus, as many as two of the four data storage

10

25

30

40

45

16

facilities D1 through D4 may be inoperative due to main-
tenance, system failure, power failure, or the like, without
affecting the functionality of the trust engine 110. In addi-
tion, because, according to one embodiment, the data stored
in each data storage facility is randomized and undecipher-
able, compromise of any individual data storage facility
does not necessarily compromise the sensitive data. More-
over, in the embodiment having geographical separation of
the data storage facilities, a compromise of multiple geo-
graphically remote facilities becomes increasingly difficult.
In fact, even a rogue employee will be greatly challenged to
subvert the needed multiple independent geographically
remote data storage facilities.

Although the depository system 700 is disclosed with
reference to its preferred and alternative embodiments, the
invention is not intended to be limited thereby. Rather, a
skilled artisan will recognize from the disclosure herein, a
wide number of alternatives for the depository system 700.
For example, the depository system 700 may comprise one,
two or more data storage facilities. In addition, sensitive data
may be mathematically operated such that portions from two
or more data storage facilities are needed to reassemble and
decipher the sensitive data.

As mentioned in the foregoing, the authentication engine
215 and the cryptographic engine 220 each include a data
splitting module 520 and 610, respectively, for splitting any
type or form of sensitive data, such as, for example, text,
audio, video, the authentication data and the cryptographic
key data. FIG. 8 illustrates a flowchart of a data splitting
process 800 performed by the data splitting module accord-
ing to aspects of an embodiment of the invention. As shown
in FIG. 8, the data splitting process 800 begins at step 805
when sensitive data “S” is received by the data splitting
module of the authentication engine 215 or the crypto-
graphic engine 220. Preferably, in step 810, the data splitting
module then generates a substantially random number,
value, or string or set of bits, “A.” For example, the random
number A may be generated in a wide number of varying
conventional techniques available to one of ordinary skill in
the art, for producing high quality random numbers suitable
for use in cryptographic applications. In addition, according
to one embodiment, the random number A comprises a bit
length which may be any suitable length, such as shorter,
longer or equal to the bit length of the sensitive data, S.

In addition, in step 820 the data splitting process 800
generates another statistically random number “C.” Accord-
ing to the preferred embodiment, the generation of the
statistically random numbers A and C may advantageously
be done in parallel. The data splitting module then combines
the numbers A and C with the sensitive data S such that new
numbers “B” and “D” are generated. For example, number
B may comprise the binary combination of A XOR S and
number D may comprise the binary combination of C XOR
S. The XOR function, or the “exclusive-or” function, is well
known to those of ordinary skill in the art. The foregoing
combinations preferably occur in steps 825 and 830, respec-
tively, and, according to one embodiment, the foregoing
combinations also occur in parallel. The data splitting pro-
cess 800 then proceeds to step 835 where the random
numbers A and C and the numbers B and D are paired such
that none of the pairings contain sufficient data, by them-
selves, to reorganize and decipher the original sensitive data
S. For example, the numbers may be paired as follows: AC,
AD, BC, and BD. According to one embodiment, each of the
foregoing pairings is distributed to one of the depositories
D1 through D4 of FIG. 7. According to another embodiment,
each of'the foregoing pairings is randomly distributed to one



US 9,465,952 B2

17

of the depositories D1 through D4. For example, during a
first data splitting process 800, the pairing AC may be sent
to depository D2, through, for example, a random selection
of D2’s IP address. Then, during a second data splitting
process 800, the pairing AC may be sent to depository D4,
through, for example, a random selection of D4’s IP address.
In addition, the pairings may all be stored on one depository,
and may be stored in separate locations on said depository.

Based on the foregoing, the data splitting process 800
advantageously places portions of the sensitive data in each
of the four data storage facilities D1 through D4, such that
no single data storage facility D1 through D4 includes
sufficient encrypted data to recreate the original sensitive
data S. As mentioned in the foregoing, such randomization
of the data into individually unusable encrypted portions
increases security and provides for maintained trust in the
data even if one of the data storage facilities, D1 through D4,
is compromised.

Although the data splitting process 800 is disclosed with
reference to its preferred embodiment, the invention is not
intended to be limited thereby. Rather a skilled artisan will
recognize from the disclosure herein, a wide number of
alternatives for the data splitting process 800. For example,
the data splitting process may advantageously split the data
into two numbers, for example, random number A and
number B and, randomly distribute A and B through two
data storage facilities. Moreover, the data splitting process
800 may advantageously split the data among a wide num-
ber of data storage facilities through generation of additional
random numbers. The data may be split into any desired,
selected, predetermined, or randomly assigned size unit,
including but not limited to, a bit, bits, bytes, kilobytes,
megabytes or larger, or any combination or sequence of
sizes. In addition, varying the sizes of the data units resulting
from the splitting process may render the data more difficult
to restore to a useable form, thereby increasing security of
sensitive data. It is readily apparent to those of ordinary skill
in the art that the split data unit sizes may be a wide variety
of data unit sizes or patterns of sizes or combinations of
sizes. For example, the data unit sizes may be selected or
predetermined to be all of the same size, a fixed set of
different sizes, a combination of sizes, or randomly gener-
ates sizes. Similarly, the data units may be distributed into
one or more shares according to a fixed or predetermined
data unit size, a pattern or combination of data unit sizes, or
a randomly generated data unit size or sizes per share.

As mentioned in the foregoing, in order to recreate the
sensitive data S, the data portions need to be derandomized
and reorganized. This process may advantageously occur in
the data assembling modules, 525 and 620, of the authen-
tication engine 215 and the cryptographic engine 220,
respectively. The data assembling module, for example, data
assembly module 525, receives data portions from the data
storage facilities D1 through D4, and reassembles the data
into useable form. For example, according to one embodi-
ment where the data splitting module 520 employed the data
splitting process 800 of FIG. 8, the data assembling module
525 uses data portions from at least two of the data storage
facilities D1 through D4 to recreate the sensitive data S. For
example, the pairings of AC, AD, BC, and BD, were
distributed such that any two provide one of A and B, or, C
and D. Noting that S=A XOR B or S=C XOR D indicates
that when the data assembling module receives one of A and
B, or, C and D, the data assembling module 525 can
advantageously reassemble the sensitive data S. Thus, the
data assembling module 525 may assemble the sensitive
data S, when, for example, it receives data portions from at

10

15

20

25

30

35

40

45

50

55

60

65

18
least the first two of the data storage facilities D1 through D4
to respond to an assemble request by the trust engine 110.

Based on the above data splitting and assembling pro-
cesses, the sensitive data S exists in usable format only in a
limited area of the trust engine 110. For example, when the
sensitive data S includes enrollment authentication data,
usable, nonrandomized enrollment authentication data is
available only in the authentication engine 215. Likewise,
when the sensitive data S includes private cryptographic key
data, usable, nonrandomized private cryptographic key data
is available only in the cryptographic engine 220.

Although the data splitting and assembling processes are
disclosed with reference to their preferred embodiments, the
invention is not intended to be limited thereby. Rather, a
skilled artisan will recognize from the disclosure herein, a
wide number of alternatives for splitting and reassembling
the sensitive data S. For example, public-key encryption
may be used to further secure the data at the data storage
facilities D1 through D4. In addition, it is readily apparent
to those of ordinary skill in the art that the data splitting
module described herein is also a separate and distinct
embodiment of the present invention that may be incorpo-
rated into, combined with or otherwise made part of any
pre-existing computer systems, software suites, database, or
combinations thereof, or other embodiments of the present
invention, such as the trust engine, authentication engine,
and transaction engine disclosed and described herein.

FIG. 9A illustrates a data flow of an enrollment process
900 according to aspects of an embodiment of the invention.
As shown in FIG. 9A, the enrollment process 900 begins at
step 905 when a user desires to enroll with the trust engine
110 of the cryptographic system 100. According to this
embodiment, the user system 105 advantageously includes a
client-side applet, such as a Java-based, that queries the user
to enter enrollment data, such as demographic data and
enrollment authentication data. According to one embodi-
ment, the enrollment authentication data includes user 1D,
password(s), biometric(s), or the like. According to one
embodiment, during the querying process, the client-side
applet preferably communicates with the trust engine 110 to
ensure that a chosen user ID is unique. When the user 1D is
nonunique, the trust engine 110 may advantageously suggest
a unique user ID. The client-side applet gathers the enroll-
ment data and transmits the enrollment data, for example,
through and XML document, to the trust engine 110, and in
particular, to the transaction engine 205. According to one
embodiment, the transmission is encoded with the public
key of the authentication engine 215.

According to one embodiment, the user performs a single
enrollment during step 905 of the enrollment process 900.
For example, the user enrolls himself or herself as a par-
ticular person, such as Joe User. When Joe User desires to
enroll as Joe User, CEO of Mega Corp., then according to
this embodiment, Joe User enrolls a second time, receives a
second unique user ID and the trust engine 110 does not
associate the two identities. According to another embodi-
ment of the invention, the enrollment process 900 provides
for multiple user identities for a single user ID. Thus, in the
above example, the trust engine 110 will advantageously
associate the two identities of Joe User. As will be under-
stood by a skilled artisan from the disclosure herein, a user
may have many identities, for example, Joe User the head of
household, Joe User the member of the Charitable Founda-
tions, and the like. Even though the user may have multiple
identities, according to this embodiment, the trust engine
110 preferably stores only one set of enrollment data.



US 9,465,952 B2

19

Moreover, users may advantageously add, edit/update, or
delete identities as they are needed.

Although the enrollment process 900 is disclosed with
reference to its preferred embodiment, the invention is not
intended to be limited thereby. Rather, a skilled artisan will
recognize from the disclosure herein, a wide number of
alternatives for gathering of enrollment data, and in particu-
lar, enrollment authentication data. For example, the applet
may be common object model (COM) based applet or the
like.

On the other hand, the enrollment process may include
graded enrollment. For example, at a lowest level of enroll-
ment, the user may enroll over the communication link 125
without producing documentation as to his or her identity.
According to an increased level of enrollment, the user
enrolls using a trusted third party, such as a digital notary.
For example, and the user may appear in person to the
trusted third party, produce credentials such as a birth
certificate, driver’s license, military ID, or the like, and the
trusted third party may advantageously include, for example,
their digital signature in enrollment submission. The trusted
third party may include an actual notary, a government
agency, such as the Post Office or Department of Motor
Vehicles, a human resources person in a large company
enrolling an employee, or the like. A skilled artisan will
understand from the disclosure herein that a wide number of
varying levels of enrollment may occur during the enroll-
ment process 900.

After receiving the enrollment authentication data, at step
915, the transaction engine 205, using conventional FULL
SSL technology forwards the enrollment authentication data
to the authentication engine 215. In step 920, the authenti-
cation engine 215 decrypts the enrollment authentication
data using the private key of the authentication engine 215.
In addition, the authentication engine 215 employs the data
splitting module to mathematically operate on the enroll-
ment authentication data so as to split the data into at least
two independently undecipherable, randomized, numbers.
As mentioned in the foregoing, at least two numbers may
comprise a statistically random number and a binary XORed
number. In step 925, the authentication engine 215 forwards
each portion of the randomized numbers to one of the data
storage facilities D1 through D4. As mentioned in the
foregoing, the authentication engine 215 may also advanta-
geously randomize which portions are transferred to which
depositories.

Often during the enrollment process 900, the user will
also desire to have a digital certificate issued such that he or
she may receive encrypted documents from others outside
the cryptographic system 100. As mentioned in the forego-
ing, the certificate authority 115 generally issues digital
certificates according to one or more of several conventional
standards. Generally, the digital certificate includes a public
key of the user or system, which is known to everyone.

Whether the user requests a digital certificate at enroll-
ment, or at another time, the request is transferred through
the trust engine 110 to the authentication engine 215.
According to one embodiment, the request includes an XML
document having, for example, the proper name of the user.
According to step 935, the authentication engine 215 trans-
fers the request to the cryptographic engine 220 instructing
the cryptographic engine 220 to generate a cryptographic
key or key pair.

Upon request, at step 935, the cryptographic engine 220
generates at least one cryptographic key. According to one
embodiment, the cryptographic handling module 625 gen-
erates a key pair, where one key is used as a private key, and

10

15

20

25

30

35

40

45

50

55

60

65

20

one is used as a public key. The cryptographic engine 220
stores the private key and, according to one embodiment, a
copy of the public key. In step 945, the cryptographic engine
220 transmits a request for a digital certificate to the trans-
action engine 205. According to one embodiment, the
request advantageously includes a standardized request,
such as PKCS10, embedded in, for example, an XML
document. The request for a digital certificate may advan-
tageously correspond to one or more certificate authorities
and the one or more standard formats the certificate authori-
ties require.

In step 950 the transaction engine 205 forwards this
request to the certificate authority 115, who, in step 955,
returns a digital certificate. The return digital certificate may
advantageously be in a standardized format, such as PKCS7,
or in a proprietary format of one or more of the certificate
authorities 115. In step 960, the digital certificate is received
by the transaction engine 205, and a copy is forwarded to the
user and a copy is stored with the trust engine 110. The trust
engine 110 stores a copy of the certificate such that the trust
engine 110 will not need to rely on the availability of the
certificate authority 115. For example, when the user desires
to send a digital certificate, or a third party requests the
user’s digital certificate, the request for the digital certificate
is typically sent to the certificate authority 115. However, if
the certificate authority 115 is conducting maintenance or
has been victim of a failure or security compromise, the
digital certificate may not be available.

At any time after issuing the cryptographic keys, the
cryptographic engine 220 may advantageously employ the
data splitting process 800 described above such that the
cryptographic keys are split into independently undecipher-
able randomized numbers. Similar to the authentication data,
at step 965 the cryptographic engine 220 transfers the
randomized numbers to the data storage facilities D1
through D4.

A skilled artisan will recognize from the disclosure herein
that the user may request a digital certificate anytime after
enrollment. Moreover, the communications between sys-
tems may advantageously include FULL SSL or public-key
encryption technologies. Moreover, the enrollment process
may issue multiple digital certificates from multiple certifi-
cate authorities, including one or more proprietary certificate
authorities internal or external to the trust engine 110.

As disclosed in steps 935 through 960, one embodiment
of the invention includes the request for a certificate that is
eventually stored on the trust engine 110. Because, accord-
ing to one embodiment, the cryptographic handling module
625 issues the keys used by the trust engine 110, each
certificate corresponds to a private key. Therefore, the trust
engine 110 may advantageously provide for interoperability
through monitoring the certificates owned by, or associated
with, a user. For example, when the cryptographic engine
220 receives a request for a cryptographic function, the
cryptographic handling module 625 may investigate the
certificates owned by the requesting user to determine
whether the user owns a private key matching the attributes
of the request. When such a certificate exists, the crypto-
graphic handling module 625 may use the certificate or the
public or private keys associated therewith, to perform the
requested function. When such a certificate does not exist,
the cryptographic handling module 625 may advantageously
and transparently perform a number of actions to attempt to
remedy the lack of an appropriate key. For example, FIG. 9B
illustrates a flowchart of an interoperability process 970,
which according to aspects of an embodiment of the inven-



US 9,465,952 B2

21

tion, discloses the foregoing steps to ensure the crypto-
graphic handling module 625 performs cryptographic func-
tions using appropriate keys.

As shown in FIG. 9B, the interoperability process 970
begins with step 972 where the cryptographic handling
module 925 determines the type of certificate desired.
According to one embodiment of the invention, the type of
certificate may advantageously be specified in the request
for cryptographic functions, or other data provided by the
requestor. According to another embodiment, the certificate
type may be ascertained by the data format of the request.
For example, the cryptographic handling module 925 may
advantageously recognize the request corresponds to a par-
ticular type.

According to one embodiment, the certificate type may
include one or more algorithm standards, for example, RSA,
ELGAMAL, or the like. In addition, the certificate type may
include one or more key types, such as symmetric keys,
public keys, strong encryption keys such as 256 bit keys, less
secure keys, or the like. Moreover, the certificate type may
include upgrades or replacements of one or more of the
foregoing algorithm standards or keys, one or more message
or data formats, one or more data encapsulation or encoding
schemes, such as Base 32 or Base 64. The certificate type
may also include compatibility with one or more third-party
cryptographic applications or interfaces, one or more com-
munication protocols, or one or more certificate standards or
protocols. A skilled artisan will recognize from the disclo-
sure herein that other differences may exist in certificate
types, and translations to and from those differences may be
implemented as disclosed herein.

Once the cryptographic handling module 625 determines
the certificate type, the interoperability process 970 proceeds
to step 974, and determines whether the user owns a
certificate matching the type determined in step 974. When
the user owns a matching certificate, for example, the trust
engine 110 has access to the matching certificate through, for
example, prior storage thereof, the cryptographic handling
module 825 knows that a matching private key is also stored
within the trust engine 110. For example, the matching
private key may be stored within the depository 210 or
depository system 700. The cryptographic handling module
625 may advantageously request the matching private key
be assembled from, for example, the depository 210, and
then in step 976, use the matching private key to perform
cryptographic actions or functions. For example, as men-
tioned in the foregoing, the cryptographic handling module
625 may advantageously perform hashing, hash compari-
sons, data encryption or decryption, digital signature veri-
fication or creation, or the like.

When the user does not own a matching certificate, the
interoperability process 970 proceeds to step 978 where the
cryptographic handling module 625 determines whether the
users owns a cross-certified certificate. According to one
embodiment, cross-certification between certificate authori-
ties occurs when a first certificate authority determines to
trust certificates from a second certificate authority. In other
words, the first certificate authority determines that certifi-
cates from the second certificate authority meets certain
quality standards, and therefore, may be “certified” as
equivalent to the first certificate authority’s own certificates.
Cross-certification becomes more complex when the certifi-
cate authorities issue, for example, certificates having levels
of trust. For example, the first certificate authority may
provide three levels of trust for a particular certificate,
usually based on the degree of reliability in the enrollment
process, while the second certificate authority may provide

10

15

20

25

30

35

40

45

50

55

60

65

22

seven levels of trust. Cross-certification may advantageously
track which levels and which certificates from the second
certificate authority may be substituted for which levels and
which certificates from the first. When the foregoing cross-
certification is done officially and publicly between two
certification authorities, the mapping of certificates and
levels to one another is often called “chaining.”

According to another embodiment of the invention, the
cryptographic handling module 625 may advantageously
develop cross-certifications outside those agreed upon by the
certificate authorities. For example, the cryptographic han-
dling module 625 may access a first certificate authority’s
certificate practice statement (CPS), or other published
policy statement, and using, for example, the authentication
tokens required by particular trust levels, match the first
certificate authority’s certificates to those of another certifi-
cate authority.

When, in step 978, the cryptographic handling module
625 determines that the users owns a cross-certified certifi-
cate, the interoperability process 970 proceeds to step 976,
and performs the cryptographic action or function using the
cross-certified public key, private key, or both. Alternatively,
when the cryptographic handling module 625 determines
that the users does not own a cross-certified certificate, the
interoperability process 970 proceeds to step 980, where the
cryptographic handling module 625 selects a certificate
authority that issues the requested certificate type, or a
certificate cross-certified thereto. In step 982, the crypto-
graphic handling module 625 determines whether the user
enrollment authentication data, discussed in the foregoing,
meets the authentication requirements of the chosen certifi-
cate authority. For example, if the user enrolled over a
network by, for example, answering demographic and other
questions, the authentication data provided may establish a
lower level of trust than a user providing biometric data and
appearing before a third-party, such as, for example, a
notary. According to one embodiment, the foregoing authen-
tication requirements may advantageously be provided in
the chosen authentication authority’s CPS.

When the user has provided the trust engine 110 with
enrollment authentication data meeting the requirements of
chosen certificate authority, the interoperability process 970
proceeds to step 984, where the cryptographic handling
module 825 acquires the certificate from the chosen certifi-
cate authority. According to one embodiment, the crypto-
graphic handling module 625 acquires the certificate by
following steps 945 through 960 of the enrollment process
900. For example, the cryptographic handling module 625
may advantageously employ one or more public keys from
one or more of the key pairs already available to the
cryptographic engine 220, to request the certificate from the
certificate authority. According to another embodiment, the
cryptographic handling module 625 may advantageously
generate one or more new key pairs, and use the public keys
corresponding thereto, to request the certificate from the
certificate authority.

According to another embodiment, the trust engine 110
may advantageously include one or more certificate issuing
modules capable of issuing one or more certificate types.
According to this embodiment, the certificate issuing mod-
ule may provide the foregoing certificate. When the cryp-
tographic handling module 625 acquires the certificate, the
interoperability process 970 proceeds to step 976, and per-
forms the cryptographic action or function using the public
key, private key, or both corresponding to the acquired
certificate.



US 9,465,952 B2

23

When the user, in step 982, has not provided the trust
engine 110 with enrollment authentication data meeting the
requirements of chosen certificate authority, the crypto-
graphic handling module 625 determines, in step 986
whether there are other certificate authorities that have
different authentication requirements. For example, the
cryptographic handling module 625 may look for certificate
authorities having lower authentication requirements, but
still issue the chosen certificates, or cross-certifications
thereof.

When the foregoing certificate authority having lower
requirements exists, the interoperability process 970 pro-
ceeds to step 980 and chooses that certificate authority.
Alternatively, when no such certificate authority exists, in
step 988, the trust engine 110 may request additional authen-
tication tokens from the user. For example, the trust engine
110 may request new enrollment authentication data com-
prising, for example, biometric data. Also, the trust engine
110 may request the user appear before a trusted third party
and provide appropriate authenticating credentials, such as,
for example, appearing before a notary with a drivers
license, social security card, bank card, birth certificate,
military ID, or the like. When the trust engine 110 receives
updated authentication data, the interoperability process 970
proceeds to step 984 and acquires the foregoing chosen
certificate.

Through the foregoing interoperability process 970, the
cryptographic handling module 625 advantageously pro-
vides seamless, transparent, translations and conversions
between differing cryptographic systems. A skilled artisan
will recognize from the disclosure herein, a wide number of
advantages and implementations of the foregoing interop-
erable system. For example, the foregoing step 986 of the
interoperability process 970 may advantageously include
aspects of trust arbitrage, discussed in further detail below,
where the certificate authority may under special circum-
stances accept lower levels of cross-certification. In addi-
tion, the interoperability process 970 may include ensuring
interoperability between and employment of standard cer-
tificate revocations, such as employing certificate revocation
lists (CRL), online certificate status protocols (OCSP), or the
like.

FIG. 10 illustrates a data flow of an authentication process
1000 according to aspects of an embodiment of the inven-
tion. According to one embodiment, the authentication pro-
cess 1000 includes gathering current authentication data
from a user and comparing that to the enrollment authenti-
cation data of the user. For example, the authentication
process 1000 begins at step 1005 where a user desires to
perform a transaction with, for example, a vendor. Such
transactions may include, for example, selecting a purchase
option, requesting access to a restricted area or device of the
vendor system 120, or the like. At step 1010, a vendor
provides the user with a transaction ID and an authentication
request. The transaction 1D may advantageously include a
192 bit quantity having a 32 bit timestamp concatenated
with a 128 bit random quantity, or a “nonce,” concatenated
with a 32 bit vendor specific constant. Such a transaction ID
uniquely identifies the transaction such that copycat trans-
actions can be refused by the trust engine 110.

The authentication request may advantageously include
what level of authentication is needed for a particular
transaction. For example, the vendor may specify a particu-
lar level of confidence that is required for the transaction at
issue. If authentication cannot be made to this level of
confidence, as will be discussed below, the transaction will
not occur without either further authentication by the user to

10

15

20

25

30

35

40

45

50

55

60

24

raise the level of confidence, or a change in the terms of the
authentication between the vendor and the server. These
issues are discussed more completely below.

According to one embodiment, the transaction ID and the
authentication request may be advantageously generated by
a vendor-side applet or other software program. In addition,
the transmission of the transaction ID and authentication
data may include one or more XML documents encrypted
using conventional SSL technology, such as, for example, 12
SSL, or, in other words vendor-side authenticated SSL.

After the user system 105 receives the transaction 1D and
authentication request, the user system 105 gathers the
current authentication data, potentially including current
biometric information, from the user. The user system 105,
at step 1015, encrypts at least the current authentication data
“B” and the transaction ID, with the public key of the
authentication engine 215, and transfers that data to the trust
engine 110. The transmission preferably comprises XML
documents encrypted with at least conventional 2 SSL
technology. In step 1020, the transaction engine 205 receives
the transmission, preferably recognizes the data format or
request in the URL or URI, and forwards the transmission to
the authentication engine 215.

During steps 1015 and 1020, the vendor system 120, at
step 1025, forwards the transaction ID and the authentica-
tion request to the trust engine 110, using the preferred
FULL SSL technology. This communication may also
include a vendor ID, although vendor identification may also
be communicated through a non-random portion of the
transaction ID. At steps 1030 and 1035, the transaction
engine 205 receives the communication, creates a record in
the audit trail, and generates a request for the user’s enroll-
ment authentication data to be assembled from the data
storage facilities D1 through D4. At step 1040, the deposi-
tory system 700 transfers the portions of the enrollment
authentication data corresponding to the user to the authen-
tication engine 215. At step 1045, the authentication engine
215 decrypts the transmission using its private key and
compares the enrollment authentication data to the current
authentication data provided by the user.

The comparison of step 1045 may advantageously apply
heuristical context sensitive authentication, as referred to in
the forgoing, and discussed in further detail below. For
example, if the biometric information received does not
match perfectly, a lower confidence match results. In par-
ticular embodiments, the level of confidence of the authen-
tication is balanced against the nature of the transaction and
the desires of both the user and the vendor. Again, this is
discussed in greater detail below.

At step 1050, the authentication engine 215 fills in the
authentication request with the result of the comparison of
step 1045. According to one embodiment of the invention,
the authentication request is filled with a YES/NO or TRUE/
FALSE result of the authentication process 1000. In step
1055 the filled-in authentication request is returned to the
vendor for the vendor to act upon, for example, allowing the
user to complete the transaction that initiated the authenti-
cation request. According to one embodiment, a confirma-
tion message is passed to the user.

Based on the foregoing, the authentication process 1000
advantageously keeps sensitive data secure and produces
results configured to maintain the integrity of the sensitive
data. For example, the sensitive data is assembled only
inside the authentication engine 215. For example, the
enrollment authentication data is undecipherable until it is
assembled in the authentication engine 215 by the data
assembling module, and the current authentication data is



US 9,465,952 B2

25

undecipherable until it is unwrapped by the conventional
SSL technology and the private key of the authentication
engine 215. Moreover, the authentication result transmitted
to the vendor does not include the sensitive data, and the user
may not even know whether he or she produced valid
authentication data.

Although the authentication process 1000 is disclosed
with reference to its preferred and alternative embodiments,
the invention is not intended to be limited thereby. Rather, a
skilled artisan will recognize from the disclosure herein, a
wide number of alternatives for the authentication process
1000. For example, the vendor may advantageously be
replaced by almost any requesting application, even those
residing with the user system 105. For example, a client
application, such as Microsoft Word, may use an application
program interface (API) or a cryptographic API (CAPI) to
request authentication before unlocking a document. Alter-
natively, a mail server, a network, a cellular phone, a
personal or mobile computing device, a workstation, or the
like, may all make authentication requests that can be filled
by the authentication process 1000. In fact, after providing
the foregoing trusted authentication process 1000, the
requesting application or device may provide access to or
use of a wide number of electronic or computer devices or
systems.

Moreover, the authentication process 1000 may employ a
wide number of alternative procedures in the event of
authentication failure. For example, authentication failure
may maintain the same transaction ID and request that the
user reenter his or her current authentication data. As men-
tioned in the foregoing, use of the same transaction 1D
allows the comparator of the authentication engine 215 to
monitor and limit the number of authentication attempts for
a particular transaction, thereby creating a more secure
cryptographic system 100.

In addition, the authentication process 1000 may be
advantageously be employed to develop elegant single sign-
on solutions, such as, unlocking a sensitive data vault. For
example, successful or positive authentication may provide
the authenticated user the ability to automatically access any
number of passwords for an almost limitless number of
systems and applications. For example, authentication of a
user may provide the user access to password, login, finan-
cial credentials, or the like, associated with multiple online
vendors, a local area network, various personal computing
devices, Internet service providers, auction providers,
investment brokerages, or the like. By employing a sensitive
data vault, users may choose truly large and random pass-
words because they no longer need to remember them
through association. Rather, the authentication process 1000
provides access thereto. For example, a user may choose a
random alphanumeric string that is twenty plus digits in
length rather than something associated with a memorable
data, name, etc.

According to one embodiment, a sensitive data vault
associated with a given user may advantageously be stored
in the data storage facilities of the depository 210, or split
and stored in the depository system 700. According to this
embodiment, after positive user authentication, the trust
engine 110 serves the requested sensitive data, such as, for
example, to the appropriate password to the requesting
application. According to another embodiment, the trust
engine 110 may include a separate system for storing the
sensitive data vault. For example, the trust engine 110 may
include a stand-alone software engine implementing the data
vault functionality and figuratively residing “behind” the
foregoing front-end security system of the trust engine 110.

20

25

30

35

40

45

26

According to this embodiment, the software engine serves
the requested sensitive data after the software engine
receives a signal indicating positive user authentication from
the trust engine 110.

In yet another embodiment, the data vault may be imple-
mented by a third-party system. Similar to the software
engine embodiment, the third-party system may advanta-
geously serve the requested sensitive data after the third-
party system receives a signal indicating positive user
authentication from the trust engine 110. According to yet
another embodiment, the data vault may be implemented on
the user system 105. A user-side software engine may
advantageously serve the foregoing data after receiving a
signal indicating positive user authentication from the trust
engine 110.

Although the foregoing data vaults are disclosed with
reference to alternative embodiments, a skilled artisan will
recognize from the disclosure herein, a wide number of
additional implementations thereof. For example, a particu-
lar data vault may include aspects from some or all of the
foregoing embodiments. In addition, any of the foregoing
data vaults may employ one or more authentication requests
at varying times. For example, any of the data vaults may
require authentication every one or more transactions, peri-
odically, every one or more sessions, every access to one or
more Webpages or Websites, at one or more other specified
intervals, or the like.

FIG. 11 illustrates a data flow of a signing process 1100
according to aspects of an embodiment of the invention. As
shown in FIG. 11, the signing process 1100 includes steps
similar to those of the authentication process 1000 described
in the foregoing with reference to FIG. 10. According to one
embodiment of the invention, the signing process 1100 first
authenticates the user and then performs one or more of
several digital signing functions as will be discussed in
further detail below. According to another embodiment, the
signing process 1100 may advantageously store data related
thereto, such as hashes of messages or documents, or the
like. This data may advantageously be used in an audit or
any other event, such as for example, when a participating
party attempts to repudiate a transaction.

As shown in FIG. 11, during the authentication steps, the
user and vendor may advantageously agree on a message,
such as, for example, a contract. During signing, the signing
process 1100 advantageously ensures that the contract
signed by the user is identical to the contract supplied by the
vendor. Therefore, according to one embodiment, during
authentication, the vendor and the user include a hash of
their respective copies of the message or contract, in the data
transmitted to the authentication engine 215. By employing
only a hash of a message or contract, the trust engine 110
may advantageously store a significantly reduced amount of
data, providing for a more efficient and cost effective cryp-
tographic system. In addition, the stored hash may be
advantageously compared to a hash of a document in
question to determine whether the document in question
matches one signed by any of the parties. The ability to
determine whether the document is identical to one relating
to a transaction provides for additional evidence that can be
used against a claim for repudiation by a party to a trans-
action.

In step 1103, the authentication engine 215 assembles the
enrollment authentication data and compares it to the current
authentication data provided by the user. When the com-
parator of the authentication engine 215 indicates that the
enrollment authentication data matches the current authen-
tication data, the comparator of the authentication engine



US 9,465,952 B2

27

215 also compares the hash of the message supplied by the
vendor to the hash of the message supplied by the user. Thus,
the authentication engine 215 advantageously ensures that
the message agreed to by the user is identical to that agreed
to by the vendor.

In step 1105, the authentication engine 215 transmits a
digital signature request to the cryptographic engine 220.
According to one embodiment of the invention, the request
includes a hash of the message or contract. However, a
skilled artisan will recognize from the disclosure herein that
the cryptographic engine 220 may encrypt virtually any type
of data, including, but not limited to, video, audio, biomet-
rics, images or text to form the desired digital signature.
Returning to step 1105, the digital signature request prefer-
ably comprises an XML document communicated through
conventional SSL. technologies.

In step 1110, the authentication engine 215 transmits a
request to each of the data storage facilities D1 through D4,
such that each of the data storage facilities D1 through D4
transmit their respective portion of the cryptographic key or
keys corresponding to a signing party. According to another
embodiment, the cryptographic engine 220 employs some or
all of the steps of the interoperability process 970 discussed
in the foregoing, such that the cryptographic engine 220 first
determines the appropriate key or keys to request from the
depository 210 or the depository system 700 for the signing
party, and takes actions to provide appropriate matching
keys. According to still another embodiment, the authenti-
cation engine 215 or the cryptographic engine 220 may
advantageously request one or more of the keys associated
with the signing party and stored in the depository 210 or
depository system 700.

According to one embodiment, the signing party includes
one or both the user and the vendor. In such case, the
authentication engine 215 advantageously requests the cryp-
tographic keys corresponding to the user and/or the vendor.
According to another embodiment, the signing party
includes the trust engine 110. In this embodiment, the trust
engine 110 is certifying that the authentication process 1000
properly authenticated the user, vendor, or both. Therefore,
the authentication engine 215 requests the cryptographic key
of the trust engine 110, such as, for example, the key
belonging to the cryptographic engine 220, to perform the
digital signature. According to another embodiment, the
trust engine 110 performs a digital notary-like function. In
this embodiment, the signing party includes the user, vendor,
or both, along with the trust engine 110. Thus, the trust
engine 110 provides the digital signature of the user and/or
vendor, and then indicates with its own digital signature that
the user and/or vendor were properly authenticated. In this
embodiment, the authentication engine 215 may advanta-
geously request assembly of the cryptographic keys corre-
sponding to the user, the vendor, or both. According to
another embodiment, the authentication engine 215 may
advantageously request assembly of the cryptographic keys
corresponding to the trust engine 110.

According to another embodiment, the trust engine 110
performs power of attorney-like functions. For example, the
trust engine 110 may digitally sign the message on behalf of
a third party. In such case, the authentication engine 215
requests the cryptographic keys associated with the third
party. According to this embodiment, the signing process
1100 may advantageously include authentication of the third
party, before allowing power of attorney-like functions. In
addition, the authentication process 1000 may include a
check for third party constraints, such as, for example,

20

30

40

45

55

28

business logic or the like dictating when and in what
circumstances a particular third-party’s signature may be
used.

Based on the foregoing, in step 1110, the authentication
engine requested the cryptographic keys from the data
storage facilities D1 through D4 corresponding to the sign-
ing party. In step 1115, the data storage facilities D1 through
D4 transmit their respective portions of the cryptographic
key corresponding to the signing party to the cryptographic
engine 220. According to one embodiment, the foregoing
transmissions include SSL technologies. According to
another embodiment, the foregoing transmissions may
advantageously be super-encrypted with the public key of
the cryptographic engine 220.

In step 1120, the cryptographic engine 220 assembles the
foregoing cryptographic keys of the signing party and
encrypts the message therewith, thereby forming the digital
signature(s). In step 1125 of the signing process 1100, the
cryptographic engine 220 transmits the digital signature(s)
to the authentication engine 215. In step 1130, the authen-
tication engine 215 transmits the filled-in authentication
request along with a copy of the hashed message and the
digital signature(s) to the transaction engine 205. In step
1135, the transaction engine 205 transmits a receipt com-
prising the transaction ID, an indication of whether the
authentication was successful, and the digital signature(s), to
the vendor. According to one embodiment, the foregoing
transmission may advantageously include the digital signa-
ture of the trust engine 110. For example, the trust engine
110 may encrypt the hash of the receipt with its private key,
thereby forming a digital signature to be attached to the
transmission to the vendor.

According to one embodiment, the transaction engine 205
also transmits a confirmation message to the user. Although
the signing process 1100 is disclosed with reference to its
preferred and alternative embodiments, the invention is not
intended to be limited thereby. Rather, a skilled artisan will
recognize from the disclosure herein, a wide number of
alternatives for the signing process 1100. For example, the
vendor may be replaced with a user application, such as an
email application. For example, the user may wish to
digitally sign a particular email with his or her digital
signature. In such an embodiment, the transmission through-
out the signing process 1100 may advantageously include
only one copy of a hash of the message. Moreover, a skilled
artisan will recognize from the disclosure herein that a wide
number of client applications may request digital signatures.
For example, the client applications may comprise word
processors, spreadsheets, emails, voicemail, access to
restricted system areas, or the like.

In addition, a skilled artisan will recognize from the
disclosure herein that steps 1105 through 1120 of the signing
process 1100 may advantageously employ some or all of the
steps of the interoperability process 970 of FIG. 9B, thereby
providing interoperability between differing cryptographic
systems that may, for example, need to process the digital
signature under differing signature types.

FIG. 12 illustrates a data flow of an encryption/decryption
process 1200 according to aspects of an embodiment of the
invention. As shown in FIG. 12, the decryption process 1200
begins by authenticating the user using the authentication
process 1000. According to one embodiment, the authenti-
cation process 1000 includes in the authentication request, a
synchronous session key. For example, in conventional PKI
technologies, it is understood by skilled artisans that
encrypting or decrypting data using public and private keys
is mathematically intensive and may require significant



US 9,465,952 B2

29

system resources. However, in symmetric key cryptographic
systems, or systems where the sender and receiver of a
message share a single common key that is used to encrypt
and decrypt a message, the mathematical operations are
significantly simpler and faster. Thus, in the conventional
PKI technologies, the sender of a message will generate
synchronous session key, and encrypt the message using the
simpler, faster symmetric key system. Then, the sender will
encrypt the session key with the public key of the receiver.
The encrypted session key will be attached to the synchro-
nously encrypted message and both data are sent to the
receiver. The receiver uses his or her private key to decrypt
the session key, and then uses the session key to decrypt the
message. Based on the foregoing, the simpler and faster
symmetric key system is used for the majority of the
encryption/decryption processing. Thus, in the decryption
process 1200, the decryption advantageously assumes that a
synchronous key has been encrypted with the public key of
the user. Thus, as mentioned in the foregoing, the encrypted
session key is included in the authentication request.

Returning to the decryption process 1200, after the user
has been authenticated in step 1205, the authentication
engine 215 forwards the encrypted session key to the
cryptographic engine 220. In step 1210, the authentication
engine 215 forwards a request to each of the data storage
facilities, D1 through D4, requesting the cryptographic key
data of the user. In step 1215, each data storage facility, D1
through D4, transmits their respective portion of the cryp-
tographic key to the cryptographic engine 220. According to
one embodiment, the foregoing transmission is encrypted
with the public key of the cryptographic engine 220.

In step 1220 of the decryption process 1200, the crypto-
graphic engine 220 assembles the cryptographic key and
decrypts the session key therewith. In step 1225, the cryp-
tographic engine forwards the session key to the authenti-
cation engine 215. In step 1227, the authentication engine
215 fills in the authentication request including the
decrypted session key, and transmits the filled-in authenti-
cation request to the transaction engine 205. In step 1230,
the transaction engine 205 forwards the authentication
request along with the session key to the requesting appli-
cation or vendor. Then, according to one embodiment, the
requesting application or vendor uses the session key to
decrypt the encrypted message.

Although the decryption process 1200 is disclosed with
reference to its preferred and alternative embodiments, a
skilled artisan will recognize from the disclosure herein, a
wide number of alternatives for the decryption process 1200.
For example, the decryption process 1200 may forego
synchronous key encryption and rely on full public-key
technology. In such an embodiment, the requesting applica-
tion may transmit the entire message to the cryptographic
engine 220, or, may employ some type of compression or
reversible hash in order to transmit the message to the
cryptographic engine 220. A skilled artisan will also recog-
nize from the disclosure herein that the foregoing commu-
nications may advantageously include XML documents
wrapped in SSL technology.

The encryption/decryption process 1200 also provides for
encryption of documents or other data. Thus, in step 1235,
a requesting application or vendor may advantageously
transmit to the transaction engine 205 of the trust engine
110, a request for the public key of the user. The requesting
application or vendor makes this request because the
requesting application or vendor uses the public key of the
user, for example, to encrypt the session key that will be
used to encrypt the document or message. As mentioned in

10

15

20

25

30

35

40

45

50

55

60

65

30

the enrollment process 900, the transaction engine 205
stores a copy of the digital certificate of the user, for
example, in the mass storage 225. Thus, in step 1240 of the
encryption process 1200, the transaction engine 205 requests
the digital certificate of the user from the mass storage 225.
In step 1245, the mass storage 225 transmits the digital
certificate corresponding to the user, to the transaction
engine 205. In step 1250, the transaction engine 205 trans-
mits the digital certificate to the requesting application or
vendor. According to one embodiment, the encryption por-
tion of the encryption process 1200 does not include the
authentication of a user. This is because the requesting
vendor needs only the public key of the user, and is not
requesting any sensitive data.

A skilled artisan will recognize from the disclosure herein
that if a particular user does not have a digital certificate, the
trust engine 110 may employ some or all of the enrollment
process 900 in order to generate a digital certificate for that
particular user. Then, the trust engine 110 may initiate the
encryption/decryption process 1200 and thereby provide the
appropriate digital certificate. In addition, a skilled artisan
will recognize from the disclosure herein that steps 1220 and
1235 through 1250 of the encryption/decryption process
1200 may advantageously employ some or all of the steps of
the interoperability process of FIG. 9B, thereby providing
interoperability between differing cryptographic systems
that may, for example, need to process the encryption.

FIG. 13 illustrates a simplified block diagram of a trust
engine system 1300 according to aspects of yet another
embodiment of the invention. As shown in FIG. 13, the trust
engine system 1300 comprises a plurality of distinct trust
engines 1305, 1310, 1315, and 1320, respectively. To facili-
tate a more complete understanding of the invention, FIG.
13 illustrates each trust engine, 1305, 1310, 1315, and 1320
as having a transaction engine, a depository, and an authen-
tication engine. However, a skilled artisan will recognize
that each transaction engine may advantageously comprise
some, a combination, or all of the elements and communi-
cation channels disclosed with reference to FIGS. 1-8. For
example, one embodiment may advantageously include trust
engines having one or more transaction engines, deposito-
ries, and cryptographic servers or any combinations thereof.

According to one embodiment of the invention, each of
the trust engines 1305, 1310, 1315 and 1320 are geographi-
cally separated, such that, for example, the trust engine 1305
may reside in a first location, the trust engine 1310 may
reside in a second location, the trust engine 1315 may reside
in a third location, and the trust engine 1320 may reside in
a fourth location. The foregoing geographic separation
advantageously decreases system response time while
increasing the security of the overall trust engine system
1300.

For example, when a user logs onto the cryptographic
system 100, the user may be nearest the first location and
may desire to be authenticated. As described with reference
to FIG. 10, to be authenticated, the user provides current
authentication data, such as a biometric or the like, and the
current authentication data is compared to that user’s enroll-
ment authentication data. Therefore, according to one
example, the user advantageously provides current authen-
tication data to the geographically nearest trust engine 1305.
The transaction engine 1321 of the trust engine 1305 then
forwards the current authentication data to the authentication
engine 1322 also residing at the first location. According to
another embodiment, the transaction engine 1321 forwards
the current authentication data to one or more of the authen-
tication engines of the trust engines 1310, 1315, or 1320.



US 9,465,952 B2

31

The transaction engine 1321 also requests the assembly of
the enrollment authentication data from the depositories of,
for example, each of the trust engines, 1305 through 1320.
According to this embodiment, each depository provides its
portion of the enrollment authentication data to the authen-
tication engine 1322 of the trust engine 1305. The authen-
tication engine 1322 then employs the encrypted data por-
tions from, for example, the first two depositories to
respond, and assembles the enrollment authentication data
into deciphered form. The authentication engine 1322 com-
pares the enrollment authentication data with the current
authentication data and returns an authentication result to the
transaction engine 1321 of the trust engine 1305.

Based on the above, the trust engine system 1300 employs
the nearest one of a plurality of geographically separated
trust engines, 1305 through 1320, to perform the authenti-
cation process. According to one embodiment of the inven-
tion, the routing of information to the nearest transaction
engine may advantageously be performed at client-side
applets executing on one or more of the user system 105,
vendor system 120, or certificate authority 115. According to
an alternative embodiment, a more sophisticated decision
process may be employed to select from the trust engines
1305 through 1320. For example, the decision may be based
on the availability, operability, speed of connections, load,
performance, geographic proximity, or a combination
thereof, of a given trust engine.

In this way, the trust engine system 1300 lowers its
response time while maintaining the security advantages
associated with geographically remote data storage facili-
ties, such as those discussed with reference to FIG. 7 where
each data storage facility stores randomized portions of
sensitive data. For example, a security compromise at, for
example, the depository 1325 of the trust engine 1315 does
not necessarily compromise the sensitive data of the trust
engine system 1300. This is because the depository 1325
contains only non-decipherable randomized data that, with-
out more, is entirely useless.

According to another embodiment, the trust engine sys-
tem 1300 may advantageously include multiple crypto-
graphic engines arranged similar to the authentication
engines. The cryptographic engines may advantageously
perform cryptographic functions such as those disclosed
with reference to FIGS. 1-8. According to yet another
embodiment, the trust engine system 1300 may advanta-
geously replace the multiple authentication engines with
multiple cryptographic engines, thereby performing crypto-
graphic functions such as those disclosed with reference to
FIGS. 1-8. According to yet another embodiment of the
invention, the trust engine system 1300 may replace each
multiple authentication engine with an engine having some
or all of the functionality of the authentication engines,
cryptographic engines, or both, as disclosed in the forego-
g,

Although the trust engine system 1300 is disclosed with
reference to its preferred and alternative embodiments, a
skilled artisan will recognize that the trust engine system
1300 may comprise portions of trust engines 1305 through
1320. For example, the trust engine system 1300 may
include one or more transaction engines, one or more
depositories, one or more authentication engines, or one or
more cryptographic engines or combinations thereof.

FIG. 14 illustrates a simplified block diagram of a trust
engine System 1400 according to aspects of yet another
embodiment of the invention. As shown in FIG. 14, the trust
engine system 1400 includes multiple trust engines 1405,
1410, 1415 and 1420. According to one embodiment, each

25

40

45

55

32
of the trust engines 1405, 1410, 1415 and 1420, comprise
some or all of the elements of trust engine 110 disclosed with
reference to FIGS. 1-8. According to this embodiment, when
the client side applets of the user system 105, the vendor
system 120, or the certificate authority 115, communicate
with the trust engine system 1400, those communications
are sent to the IP address of each of the trust engines 1405
through 1420. Further, each transaction engine of each of the
trust engines, 1405, 1410, 1415, and 1420, behaves similar
to the transaction engine 1321 of the trust engine 1305
disclosed with reference to FIG. 13. For example, during an
authentication process, each transaction engine of each of
the trust engines 1405, 1410, 1415, and 1420 transmits the
current authentication data to their respective authentication
engines and transmits a request to assemble the randomized
data stored in each of the depositories of each of the trust
engines 1405 through 1420. FIG. 14 does not illustrate all of
these communications; as such illustration would become
overly complex. Continuing with the authentication process,
each of the depositories then communicates its portion of the
randomized data to each of the authentication engines of the
each of the trust engines 1405 through 1420. Each of the
authentication engines of the each of the trust engines
employs its comparator to determine whether the current
authentication data matches the enrollment authentication
data provided by the depositories of each of the trust engines
1405 through 1420. According to this embodiment, the
result of the comparison by each of the authentication
engines is then transmitted to a redundancy module of the
other three trust engines. For example, the result of the
authentication engine from the trust engine 1405 is trans-
mitted to the redundancy modules of the trust engines 1410,
1415, and 1420. Thus, the redundancy module of the trust
engine 1405 likewise receives the result of the authentica-
tion engines from the trust engines 1410, 1415, and 1420.

FIG. 15 illustrates a block diagram of the redundancy
module of FIG. 14. The redundancy module comprises a
comparator configured to receive the authentication result
from three authentication engines and transmit that result to
the transaction engine of the fourth trust engine. The com-
parator compares the authentication result form the three
authentication engines, and if two of the results agree, the
comparator concludes that the authentication result should
match that of the two agreeing authentication engines. This
result is then transmitted back to the transaction engine
corresponding to the trust engine not associated with the
three authentication engines.

Based on the foregoing, the redundancy module deter-
mines an authentication result from data received from
authentication engines that are preferably geographically
remote from the trust engine of that the redundancy module.
By providing such redundancy functionality, the trust engine
system 1400 ensures that a compromise of the authentication
engine of one of the trust engines 1405 through 1420, is
insufficient to compromise the authentication result of the
redundancy module of that particular trust engine. A skilled
artisan will recognize that redundancy module functionality
of the trust engine system 1400 may also be applied to the
cryptographic engine of each of the trust engines 1405
through 1420. However, such cryptographic engine commu-
nication was not shown in FIG. 14 to avoid complexity.
Moreover, a skilled artisan will recognize a wide number of
alternative authentication result conflict resolution algo-
rithms for the comparator of FIG. 15 are suitable for use in
the present invention.

According to yet another embodiment of the invention,
the trust engine system 1400 may advantageously employ



US 9,465,952 B2

33

the redundancy module during cryptographic comparison
steps. For example, some or all of the foregoing redundancy
module disclosure with reference to FIGS. 14 and 15 may
advantageously be implemented during a hash comparison
of documents provided by one or more parties during a
particular transaction.

Although the foregoing invention has been described in
terms of certain preferred and alternative embodiments,
other embodiments will be apparent to those of ordinary
skill in the art from the disclosure herein. For example, the
trust engine 110 may issue short-term certificates, where the
private cryptographic key is released to the user for a
predetermined period of time. For example, current certifi-
cate standards include a validity field that can be set to
expire after a predetermined amount of time. Thus, the trust
engine 110 may release a private key to a user where the
private key would be valid for, for example, 24 hours.
According to such an embodiment, the trust engine 110 may
advantageously issue a new cryptographic key pair to be
associated with a particular user and then release the private
key of the new cryptographic key pair. Then, once the
private cryptographic key is released, the trust engine 110
immediately expires any internal valid use of such private
key, as it is no longer securable by the trust engine 110.

In addition, a skilled artisan will recognize that the
cryptographic system 100 or the trust engine 110 may
include the ability to recognize any type of devices, such as,
but not limited to, a laptop, a cell phone, a network, a
biometric device or the like. According to one embodiment,
such recognition may come from data supplied in the request
for a particular service, such as, a request for authentication
leading to access or use, a request for cryptographic func-
tionality, or the like. According to one embodiment, the
foregoing request may include a unique device identifier,
such as, for example, a processor ID. Alternatively, the
request may include data in a particular recognizable data
format. For example, mobile and satellite phones often do
not include the processing power for full X509.v3 heavy
encryption certificates, and therefore do not request them.
According to this embodiment, the trust engine 110 may
recognize the type of data format presented, and respond
only in kind.

In an additional aspect of the system described above,
context sensitive authentication can be provided using vari-
ous techniques as will be described below. Context sensitive
authentication, for example as shown in FIG. 16, provides
the possibility of evaluating not only the actual data which
is sent by the user when attempting to authenticate himself,
but also the circumstances surrounding the generation and
delivery of that data. Such techniques may also support
transaction specific trust arbitrage between the user and trust
engine 110 or between the vendor and trust engine 110, as
will be described below.

As discussed above, authentication is the process of
proving that a user is who he says he is. Generally, authen-
tication requires demonstrating some fact to an authentica-
tion authority. The trust engine 110 of the present invention
represents the authority to which a user must authenticate
himself. The user must demonstrate to the trust engine 110
that he is who he says he is by either: knowing something
that only the user should know (knowledge-based authenti-
cation), having something that only the user should have
(token-based authentication), or by being something that
only the user should be (biometric-based authentication).

Examples of knowledge-based authentication include
without limitation a password, PIN number, or lock combi-
nation. Examples of token-based authentication include

10

15

20

25

30

35

40

45

50

55

60

65

34

without limitation a house key, a physical credit card, a
driver’s license, or a particular phone number. Examples of
biometric-based authentication include without limitation a
fingerprint, handwriting analysis, facial scan, hand scan, ear
scan, iris scan, vascular pattern, DNA, a voice analysis, or
a retinal scan.

Each type of authentication has particular advantages and
disadvantages, and each provides a different level of secu-
rity. For example, it is generally harder to create a false
fingerprint that matches someone else’s than it is to overhear
someone’s password and repeat it. Each type of authentica-
tion also requires a different type of data to be known to the
authenticating authority in order to verify someone using
that form of authentication.

As used herein, “authentication” will refer broadly to the
overall process of verifying someone’s identity to be who he
says he is. An “authentication technique” will refer to a
particular type of authentication based upon a particular
piece of knowledge, physical token, or biometric reading.
“Authentication data” refers to information which is sent to
or otherwise demonstrated to an authentication authority in
order to establish identity. “Enrollment data” will refer to the
data which is initially submitted to an authentication author-
ity in order to establish a baseline for comparison with
authentication data. An “authentication instance” will refer
to the data associated with an attempt to authenticate by an
authentication technique.

The internal protocols and communications involved in
the process of authenticating a user is described with refer-
ence to FIG. 10 above. The part of this process within which
the context sensitive authentication takes place occurs
within the comparison step shown as step 1045 of FIG. 10.
This step takes place within the authentication engine 215
and involves assembling the enrollment data 410 retrieved
from the depository 210 and comparing the authentication
data provided by the user to it. One particular embodiment
of this process is shown in FIG. 16 and described below.

The current authentication data provided by the user and
the enrollment data retrieved from the depository 210 are
received by the authentication engine 215 in step 1600 of
FIG. 16. Both of these sets of data may contain data which
is related to separate techniques of authentication. The
authentication engine 215 separates the authentication data
associated with each individual authentication instance in
step 1605. This is necessary so that the authentication data
is compared with the appropriate subset of the enrollment
data for the user (e.g. fingerprint authentication data should
be compared with fingerprint enrollment data, rather than
password enrollment data).

Generally, authenticating a user involves one or more
individual authentication instances, depending on which
authentication techniques are available to the user. These
methods are limited by the enrollment data which were
provided by the user during his enrollment process (if the
user did not provide a retinal scan when enrolling, he will
not be able to authenticate himself using a retinal scan), as
well as the means which may be currently available to the
user (e.g. if the user does not have a fingerprint reader at his
current location, fingerprint authentication will not be prac-
tical). In some cases, a single authentication instance may be
sufficient to authenticate a user; however, in certain circum-
stances a combination of multiple authentication instances
may be used in order to more confidently authenticate a user
for a particular transaction.

Each authentication instance consists of data related to a
particular authentication technique (e.g. fingerprint, pass-
word, smart card, etc.) and the circumstances which sur-



US 9,465,952 B2

35

round the capture and delivery of the data for that particular
technique. For example, a particular instance of attempting
to authenticate via password will generate not only the data
related to the password itself, but also circumstantial data,
known as “metadata”, related to that password attempt. This
circumstantial data includes information such as: the time at
which the particular authentication instance took place, the
network address from which the authentication information
was delivered, as well as any other information as is known
to those of skill in the art which may be determined about the
origin of the authentication data (the type of connection, the
processor serial number, etc.).

In many cases, only a small amount of circumstantial
metadata will be available. For example, if the user is
located on a network which uses proxies or network address
translation or another technique which masks the address of
the originating computer, only the address of the proxy or
router may be determined. Similarly, in many cases infor-
mation such as the processor serial number will not be
available because of either limitations of the hardware or
operating system being used, disabling of such features by
the operator of the system, or other limitations of the
connection between the user’s system and the trust engine
110.

As shown in FIG. 16, once the individual authentication
instances represented within the authentication data are
extracted and separated in step 1605, the authentication
engine 215 evaluates each instance for its reliability in
indicating that the user is who he claims to be. The reliability
for a single authentication instance will generally be deter-
mined based on several factors. These may be grouped as
factors relating to the reliability associated with the authen-
tication technique, which are evaluated in step 1610, and
factors relating to the reliability of the particular authenti-
cation data provided, which are evaluated in step 1815. The
first group includes without limitation the inherent reliability
of the authentication technique being used, and the reliabil-
ity of the enrollment data being used with that method. The
second group includes without limitation the degree of
match between the enrollment data and the data provided
with the authentication instance, and the metadata associated
with that authentication instance. Each of these factors may
vary independently of the others.

The inherent reliability of an authentication technique is
based on how hard it is for an imposter to provide someone
else’s correct data, as well as the overall error rates for the
authentication technique. For passwords and knowledge
based authentication methods, this reliability is often fairly
low because there is nothing that prevents someone from
revealing their password to another person and for that
second person to use that password. Even a more complex
knowledge based system may have only moderate reliability
since knowledge may be transferred from person to person
fairly easily. Token based authentication, such as having a
proper smart card or using a particular terminal to perform
the authentication, is similarly of low reliability used by
itself, since there is no guarantee that the right person is in
possession of the proper token.

However, biometric techniques are more inherently reli-
able because it is generally difficult to provide someone else
with the ability to use your fingerprints in a convenient
manner, even intentionally. Because subverting biometric
authentication techniques is more difficult, the inherent
reliability of biometric methods is generally higher than that
of purely knowledge or token based authentication tech-
niques. However, even biometric techniques may have some
occasions in which a false acceptance or false rejection is

10

15

20

25

30

35

40

45

50

55

60

65

36

generated. These occurrences may be reflected by differing
reliabilities for different implementations of the same bio-
metric technique. For example, a fingerprint matching sys-
tem provided by one company may provide a higher reli-
ability than one provided by a different company because
one uses higher quality optics or a better scanning resolution
or some other improvement which reduces the occurrence of
false acceptances or false rejections.

Note that this reliability may be expressed in different
manners. The reliability is desirably expressed in some
metric which can be used by the heuristics 530 and algo-
rithms of the authentication engine 215 to calculate the
confidence level of each authentication. One preferred mode
of expressing these reliabilities is as a percentage or fraction.
For instance, fingerprints might be assigned an inherent
reliability of 97%, while passwords might only be assigned
an inherent reliability of 50%. Those of skill in the art will
recognize that these particular values are merely exemplary
and may vary between specific implementations.

The second factor for which reliability must be assessed
is the reliability of the enrollment. This is part of the “graded
enrollment” process referred to above. This reliability factor
reflects the reliability of the identification provided during
the initial enrollment process. For instance, if the individual
initially enrolls in a manner where they physically produce
evidence of their identity to a notary or other public official,
and enrollment data is recorded at that time and notarized,
the data will be more reliable than data which is provided
over a network during enrollment and only vouched for by
a digital signature or other information which is not truly
tied to the individual.

Other enrollment techniques with varying levels of reli-
ability include without limitation: enrollment at a physical
office of the trust engine 110 operator; enrollment at a user’s
place of employment; enrollment at a post office or passport
office; enrollment through an affiliated or trusted party to the
trust engine 110 operator; anonymous or pseudonymous
enrollment in which the enrolled identity is not yet identified
with a particular real individual, as well as such other means
as are known in the art.

These factors reflect the trust between the trust engine 110
and the source of identification provided during the enroll-
ment process. For instance, if enrollment is performed in
association with an employer during the initial process of
providing evidence of identity, this information may be
considered extremely reliable for purposes within the com-
pany, but may be trusted to a lesser degree by a government
agency, or by a competitor. Therefore, trust engines operated
by each of these other organizations may assign different
levels of reliability to this enrollment.

Similarly, additional data which is submitted across a
network, but which is authenticated by other trusted data
provided during a previous enrollment with the same trust
engine 110 may be considered as reliable as the original
enrollment data was, even though the latter data were
submitted across an open network. In such circumstances, a
subsequent notarization will effectively increase the level of
reliability associated with the original enrollment data. In
this way for example, an anonymous or pseudonymous
enrollment may then be raised to a full enrollment by
demonstrating to some enrollment official the identity of the
individual matching the enrolled data.

The reliability factors discussed above are generally val-
ues which may be determined in advance of any particular
authentication instance. This is because they are based upon
the enrollment and the technique, rather than the actual
authentication. In one embodiment, the step of generating



US 9,465,952 B2

37

reliability based upon these factors involves looking up
previously determined values for this particular authentica-
tion technique and the enrollment data of the user. In a
further aspect of an advantageous embodiment of the present
invention, such reliabilities may be included with the enroll-
ment data itself. In this way, these factors are automatically
delivered to the authentication engine 215 along with the
enrollment data sent from the depository 210.

While these factors may generally be determined in
advance of any individual authentication instance, they still
have an effect on each authentication instance which uses
that particular technique of authentication for that user.
Furthermore, although the values may change over time
(e.g. if the user re-enrolls in a more reliable fashion), they
are not dependent on the authentication data itself. By
contrast, the reliability factors associated with a single
specific instance’s data may vary on each occasion. These
factors, as discussed below, must be evaluated for each new
authentication in order to generate reliability scores in step
1815.

The reliability of the authentication data reflects the match
between the data provided by the user in a particular
authentication instance and the data provided during the
authentication enrollment. This is the fundamental question
of whether the authentication data matches the enrollment
data for the individual the user is claiming to be. Normally,
when the data do not match, the user is considered to not be
successfully authenticated, and the authentication fails. The
manner in which this is evaluated may change depending on
the authentication technique used. The comparison of such
data is performed by the comparator 515 function of the
authentication engine 215 as shown in FIG. 5.

For instance, matches of passwords are generally evalu-
ated in a binary fashion. In other words, a password is either
a perfect match, or a failed match. It is usually not desirable
to accept as even a partial match a password which is close
to the correct password if it is not exactly correct. Therefore,
when evaluating a password authentication, the reliability of
the authentication returned by the comparator 515 is typi-
cally either 100% (correct) or 0% (wrong), with no possi-
bility of intermediate values.

Similar rules to those for passwords are generally applied
to token based authentication methods, such as smart cards.
This is because having a smart card which has a similar
identifier or which is similar to the correct one, is still just
as wrong as having any other incorrect token. Therefore
tokens tend also to be binary authenticators: a user either has
the right token, or he doesn’t.

However, certain types of authentication data, such as
questionnaires and biometrics, are generally not binary
authenticators. For example, a fingerprint may match a
reference fingerprint to varying degrees. To some extent, this
may be due to variations in the quality of the data captured
either during the initial enrollment or in subsequent authen-
tications. (A fingerprint may be smudged or a person may
have a still healing scar or burn on a particular finger.) In
other instances the data may match less than perfectly
because the information itself is somewhat variable and
based upon pattern matching. (A voice analysis may seem
close but not quite right because of background noise, or the
acoustics of the environment in which the voice is recorded,
or because the person has a cold.) Finally, in situations
where large amounts of data are being compared, it may
simply be the case that much of the data matches well, but
some doesn’t. (A ten-question questionnaire may have
resulted in eight correct answers to personal questions, but
two incorrect answers.) For any of these reasons, the match

20

30

35

40

45

50

55

38

between the enrollment data and the data for a particular
authentication instance may be desirably assigned a partial
match value by the comparator 515. In this way, the finger-
print might be said to be a 85% match, the voice print a 65%
match, and the questionnaire an 80% match, for example.

This measure (degree of match) produced by the com-
parator 515 is the factor representing the basic issue of
whether an authentication is correct or not. However, as
discussed above, this is only one of the factors which may
be used in determining the reliability of a given authentica-
tion instance. Note also that even though a match to some
partial degree may be determined, that ultimately, it may be
desirable to provide a binary result based upon a partial
match. In an alternate mode of operation, it is also possible
to treat partial matches as binary, i.e. either perfect (100%)
or failed (0%) matches, based upon whether or not the
degree of match passes a particular threshold level of match.
Such a process may be used to provide a simple pass/fail
level of matching for systems which would otherwise pro-
duce partial matches.

Another factor to be considered in evaluating the reliabil-
ity of a given authentication instance concerns the circum-
stances under which the authentication data for this particu-
lar instance are provided. As discussed above, the
circumstances refer to the metadata associated with a par-
ticular authentication instance. This may include without
limitation such information as: the network address of the
authenticator, to the extent that it can be determined; the
time of the authentication; the mode of transmission of the
authentication data (phone line, cellular, network, etc.); and
the serial number of the system of the authenticator.

These factors can be used to produce a profile of the type
of authentication that is normally requested by the user.
Then, this information can be used to assess reliability in at
least two manners. One manner is to consider whether the
user is requesting authentication in a manner which is
consistent with the normal profile of authentication by this
user. If the user normally makes authentication requests
from one network address during business days (when she is
at work) and from a different network address during eve-
nings or weekends (when she is at home), an authentication
which occurs from the home address during the business day
is less reliable because it is outside the normal authentication
profile. Similarly, if the user normally authenticates using a
fingerprint biometric and in the evenings, an authentication
which originates during the day using only a password is less
reliable.

An additional way in which the circumstantial metadata
can be used to evaluate the reliability of an instance of
authentication is to determine how much corroboration the
circumstance provides that the authenticator is the individual
he claims to be. For instance, if the authentication comes
from a system with a serial number known to be associated
with the user, this is a good circumstantial indicator that the
user is who they claim to be. Conversely, if the authentica-
tion is coming from a network address which is known to be
in Los Angeles when the user is known to reside in London,
this is an indication that this authentication is less reliable
based on its circumstances.

It is also possible that a cookie or other electronic data
may be placed upon the system being used by a user when
they interact with a vendor system or with the trust engine
110. This data is written to the storage of the system of the
user and may contain an identification which may be read by
a Web browser or other software on the user system. If this
data is allowed to reside on the user system between sessions
(a “persistent cookie”), it may be sent with the authentica-



US 9,465,952 B2

39

tion data as further evidence of the past use of this system
during authentication of a particular user. In effect, the
metadata of a given instance, particularly a persistent
cookie, may form a sort of token based authenticator itself.

Once the appropriate reliability factors based on the
technique and data of the authentication instance are gen-
erated as described above in steps 1610 and 1615 respec-
tively, they are used to produce an overall reliability for the
authentication instance provided in step 1620. One means of
doing this is simply to express each reliability as a percent-
age and then to multiply them together.

For example, suppose the authentication data is being sent
in from a network address known to be the user’s home
computer completely in accordance with the user’s past
authentication profile (100%), and the technique being used
is fingerprint identification (97%), and the initial finger print
data was roistered through the user’s employer with the trust
engine 110 (90%), and the match between the authentication
data and the original fingerprint template in the enrollment
data is very good (99%). The overall reliability of this
authentication instance could then be calculated as the
product of these reliabilities: 100%*97%%90%*99%-86.4%
reliability.

This calculated reliability represents the reliability of one
single instance of authentication. The overall reliability of a
single authentication instance may also be calculated using
techniques which treat the different reliability factors dif-
ferently, for example by using formulas where different
weights are assigned to each reliability factor. Furthermore,
those of skill in the art will recognize that the actual values
used may represent values other than percentages and may
use non-arithmetic systems. One embodiment may include a
module used by an authentication requestor to set the
weights for each factor and the algorithms used in estab-
lishing the overall reliability of the authentication instance.

The authentication engine 215 may use the above tech-
niques and variations thereof to determine the reliability of
a single authentication instance, indicated as step 1620.
However, it may be useful in many authentication situations
for multiple authentication instances to be provided at the
same time. For example, while attempting to authenticate
himself using the system of the present invention, a user may
provide a user identification, fingerprint authentication data,
a smart card, and a password. In such a case, three inde-
pendent authentication instances are being provided to the
trust engine 110 for evaluation. Proceeding to step 1625, if
the authentication engine 215 determines that the data
provided by the user includes more than one authentication
instance, then each instance in turn will be selected as shown
in step 1630 and evaluated as described above in steps 1610,
1615 and 1620.

Note that many of the reliability factors discussed may
vary from one of these instances to another. For instance, the
inherent reliability of these techniques is likely to be differ-
ent, as well as the degree of match provided between the
authentication data and the enrollment data. Furthermore,
the user may have provided enrollment data at different
times and under different circumstances for each of these
techniques, providing different enrollment reliabilities for
each of these instances as well. Finally, even though the
circumstances under which the data for each of these
instances is being submitted is the same, the use of such
techniques may each fit the profile of the user differently, and
so may be assigned different circumstantial reliabilities. (For
example, the user may normally use their password and
fingerprint, but not their smart card.)

40

45

40

As a result, the final reliability for each of these authen-
tication instances may be different from One another. How-
ever, by using multiple instances together, the overall con-
fidence level for the authentication will tend to increase.

Once the authentication engine has performed steps 1610
through 1620 for all of the authentication instances provided
in the authentication data, the reliability of each instance is
used in step 1635 to evaluate the overall authentication
confidence level. This process of combining the individual
authentication instance reliabilities into the authentication
confidence level may be modeled by various methods relat-
ing the individual reliabilities produced, and may also
address the particular interaction between some of these
authentication techniques. (For example, multiple knowl-
edge-based systems such as passwords may produce less
confidence than a single password and even a fairly weak
biometric, such as a basic voice analysis.)

One means in which the authentication engine 215 may
combine the reliabilities of multiple concurrent authentica-
tion instances to generate a final confidence level is to
multiply the unreliability of each instance to arrive at a total
unreliability. The unreliability is generally the complemen-
tary percentage of the reliability. For example, a technique
which is 84% reliable is 16% unreliable. The three authen-
tication instances described above (fingerprint, smart card,
password) which produce reliabilities of 86%, 75%, and
72% would have corresponding unreliabilities of (100-86)
%, (100-75)% and (100-72)%, or 14%, 25%, and 28%,
respectively. By multiplying these unreliabilities, we get a
cumulative unreliability of 14%%*25%%28%-0.98% unreli-
ability, which corresponds to a reliability of 99.02%.

In an additional mode of operation, additional factors and
heuristics 530 may be applied within the authentication
engine 215 to account for the interdependence of various
authentication techniques. For example, if someone has
unauthorized access to a particular home computer, they
probably have access to the phone line at that address as
well. Therefore, authenticating based on an originating
phone number as well as upon the serial number of the
authenticating system does not add much to the overall
confidence in the authentication. However, knowledge based
authentication is largely independent of token based authen-
tication (i.e. if someone steals your cellular phone or keys,
they are no more likely to know your PIN or password than
if they hadn’t).

Furthermore, different vendors or other authentication
requestors may wish to weigh different aspects of the
authentication differently. This may include the use of
separate weighing factors or algorithms used in calculating
the reliability of individual instances as well as the use of
different means to evaluate authentication events with mul-
tiple instances.

For instance, vendors for certain types of transactions, for
instance corporate email systems, may desire to authenticate
primarily based upon heuristics and other circumstantial
data by default. Therefore, they may apply high weights to
factors related to the metadata and other profile related
information associated with the circumstances surrounding
authentication events. This arrangement could be used to
ease the burden on users during normal operating hours, by
not requiring more from the user than that he be logged on
to the correct machine during business hours. However,
another vendor may weigh authentications coming from a
particular technique most heavily, for instance fingerprint
matching, because of a policy decision that such a technique
is most suited to authentication for the particular vendor’s

purposes.



US 9,465,952 B2

41

Such varying weights may be defined by the authentica-
tion requestor in generating the authentication request and
sent to the trust engine 110 with the authentication request
in one mode of operation. Such options could also be set as
preferences during an initial enrollment process for the
authentication requestor and stored within the authentication
engine in another mode of operation.

Once the authentication engine 215 produces an authen-
tication confidence level for the authentication data pro-
vided, this confidence level is used to complete the authen-
tication request in step 1640, and this information is
forwarded from the authentication engine 215 to the trans-
action engine 205 for inclusion in a message to the authen-
tication requestor.

The process described above is merely exemplary, and
those of skill in the art will recognize that the steps need not
be performed in the order shown or that only certain of the
steps are desired to be performed, or that a variety of
combinations of steps may be desired. Furthermore, certain
steps, such as the evaluation of the reliability of each
authentication instance provided, may be carried out in
parallel with one another if circumstances permit.

In a further aspect of this invention, a method is provided
to accommodate conditions when the authentication confi-
dence level produced by the process described above fails to
meet the required trust level of the vendor or other party
requiring the authentication. In circumstances such as these
where a gap exists between the level of confidence provided
and the level of trust desired, the operator of the trust engine
110 is in a position to provide opportunities for one or both
parties to provide alternate data or requirements in order to
close this trust gap. This process will be referred to as “trust
arbitrage” herein.

Trust arbitrage may take place within a framework of
cryptographic authentication as described above with refer-
ence to FIGS. 10 and 11. As shown therein, a vendor or other
party will request authentication of a particular user in
association with a particular transaction. In one circum-
stance, the vendor simply requests an authentication, either
positive or negative, and after receiving appropriate data
from the user, the trust engine 110 will provide such a binary
authentication. In circumstances such as these, the degree of
confidence required in order to secure a positive authenti-
cation is determined based upon preferences set within the
trust engine 110.

However, it is also possible that the vendor may request
a particular level of trust in order to complete a particular
transaction. This required level may be included with the
authentication request (e.g. authenticate this user to 98%
confidence) or may be determined by the trust engine 110
based on other factors associated with the transaction (i.e.
authenticate this user as appropriate for this transaction).
One such factor might be the economic value of the trans-
action. For transactions which have greater economic value,
a higher degree of trust may be required. Similarly, for
transactions with high degrees of risk a high degree of trust
may be required. Conversely, for transactions which are
either of low risk or of low value, lower trust levels may be
required by the vendor or other authentication requestor.

The process of trust arbitrage occurs between the steps of
the trust engine 110 receiving the authentication data in step
1050 of FIG. 10 and the return of an authentication result to
the vendor in step 1055 of FIG. 10. Between these steps, the
process which leads to the evaluation of trust levels and the
potential trust arbitrage occurs as shown in FIG. 17. In
circumstances where simple binary authentication is per-
formed, the process shown in FIG. 17 reduces to having the

30

40

45

42

transaction engine 205 directly compare the authentication
data provided with the enrollment data for the identified user
as discussed above with reference to FIG. 10, flagging any
difference as a negative authentication.

As shown in FIG. 17, the first step after receiving the data
in step 1050 is for the transaction engine 205 to determine
the trust level which is required for a positive authentication
for this particular transaction in step 1710. This step may be
performed by one of several different methods. The required
trust level may be specified to the trust engine 110 by the
authentication requestor at the time when the authentication
request is made. The authentication requestor may also set a
preference in advance which is stored within the depository
210 or other storage which is accessible by the transaction
engine 205. This preference may then be read and used each
time an authentication request is made by this authentication
requestor. The preference may also be associated with a
particular user as a security measure such that a particular
level of trust is always required in order to authenticate that
user, the user preference being stored in the depository 210
or other storage media accessible by the transaction engine
205. The required level may also be derived by the trans-
action engine 205 or authentication engine 215 based upon
information provided in the authentication request, such as
the value and risk level of the transaction to be authenti-
cated.

In one mode of operation, a policy management module
or other software which is used when generating the authen-
tication request is used to specity the required degree of trust
for the authentication of the transaction. This may be used to
provide a series of rules to follow when assigning the
required level of trust based upon the policies which are
specified within the policy management module. One advan-
tageous mode of operation is for such a module to be
incorporated with the web server of a vendor in order to
appropriately determine required level of trust for transac-
tions initiated with the vendor’s web server. In this way,
transaction requests from users may be assigned a required
trust level in accordance with the policies of the vendor and
such information may be forwarded to the trust engine 110
along with the authentication request.

This required trust level correlates with the degree of
certainty that the vendor wants to have that the individual
authenticating is in fact who he identifies himself as. For
example, if the transaction is one where the vendor wants a
fair degree of certainty because goods are changing hands,
the vendor may require a trust level of 85%. For situation
where the vendor is merely authenticating the user to allow
him to view members only content or exercise privileges on
a chat room, the downside risk may be small enough that the
vendor requires only a 60% trust level. However, to enter
into a production contract with a value of tens of thousands
of dollars, the vendor may require a trust level of 99% or
more.

This required trust level represents a metric to which the
user must authenticate himself in order to complete the
transaction. If the required trust level is 85% for example,
the user must provide authentication to the trust engine 110
sufficient for the trust engine 110 to say with 85% confidence
that the user is who they say they are. It is the balance
between this required trust level and the authentication
confidence level which produces either a positive authenti-
cation (to the satisfaction of the vendor) or a possibility of
trust arbitrage.

As shown in FIG. 17, after the transaction engine 205
receives the required trust level, it compares in step 1720 the
required trust level to the authentication confidence level



US 9,465,952 B2

43

which the authentication engine 215 calculated for the
current authentication (as discussed with reference to FIG.
16). If the authentication confidence level is higher than the
required trust level for the transaction in step 1730, then the
process moves to step 1740 where a positive authentication
for this transaction is produced by the transaction engine
205. A message to this effect will then be inserted into the
authentication results and returned to the vendor by the
transaction engine 205 as shown in step 1055 (see FIG. 10).

However, if the authentication confidence level does not
fulfill the required trust level in step 1730, then a confidence
gap exists for the current authentication, and trust arbitrage
is conducted in step 1750. Trust arbitrage is described more
completely with reference to FIG. 18 below. This process as
described below takes place within the transaction engine
205 of the trust engine 110. Because no authentication or
other cryptographic operations are needed to execute trust
arbitrage (other than those required for the SSL. communi-
cation between the transaction engine 205 and other com-
ponents), the process may be performed outside the authen-
tication engine 215. However, as will be discussed below,
any reevaluation of authentication data or other crypto-
graphic or authentication events will require the transaction
engine 205 to resubmit the appropriate data to the authen-
tication engine 215. Those of skill in the art will recognize
that the trust arbitrage process could alternately be struc-
tured to take place partially or entirely within the authenti-
cation engine 215 itself.

As mentioned above, trust arbitrage is a process where the
trust engine 110 mediates a negotiation between the vendor
and user in an attempt to secure a positive authentication
where appropriate. As shown in step 1805, the transaction
engine 205 first determines whether or not the current
situation is appropriate for trust arbitrage. This may be
determined based upon the circumstances of the authenti-
cation, e.g. whether this authentication has already been
through multiple cycles of arbitrage, as well as upon the
preferences of either the vendor or user, as will be discussed
further below.

In such circumstances where arbitrage is not possible, the
process proceeds to step 1810 where the transaction engine
205 generates a negative authentication and then inserts it
into the authentication results which are sent to the vendor
in step 1055 (see FIG. 10). One limit which may be
advantageously used to prevent authentications from pend-
ing indefinitely is to set a time-out period from the initial
authentication request. In this way, any transaction which is
not positively authenticated within the time limit is denied
further arbitrage and negatively authenticated. Those of skill
in the art will recognize that such a time limit may vary
depending upon the circumstances of the transaction and the
desires of the user and vendor. Limitations may also be
placed upon the number of attempts that may be made at
providing a successful authentication. Such limitations may
be handled by an attempt limiter 535 as shown in FIG. 5.

If arbitrage is not prohibited in step 1805, the transaction
engine 205 will then engage in negotiation with one or both
of the transacting parties. The transaction engine 205 may
send a message to the user requesting some form of addi-
tional authentication in order to boost the authentication
confidence level produced as shown in step 1820. In the
simplest form, this may simply indicates that authentication
was insufficient. A request to produce one or more additional
authentication instances to improve the overall confidence
level of the authentication may also be sent.

If the user provides some additional authentication
instances in step 1825, then the transaction engine 205 adds

10

15

20

25

30

35

40

45

50

55

60

65

44

these authentication instances to the authentication data for
the transaction and forwards it to the authentication engine
215 as shown in step 1015 (see FIG. 10), and the authenti-
cation is reevaluated based upon both the pre-existing
authentication instances for this transaction and the newly
provided authentication instances.

An additional type of authentication may be a request
from the trust engine 110 to make some form of person-to-
person contact between the trust engine 110 operator (or a
trusted associate) and the user, for example, by phone call.
This phone call or other non-computer authentication can be
used to provide personal contact with the individual and also
to conduct some form of questionnaire based authentication.
This also may give the opportunity to verify an originating
telephone number and potentially a voice analysis of the
user when he calls in. Even if no additional authentication
data can be provided, the additional context associated with
the user’s phone number may improve the reliability of the
authentication context. Any revised data or circumstances
based upon this phone call are fed into the trust engine 110
for use in consideration of the authentication request.

Additionally, in step 1820 the trust engine 110 may
provide an opportunity for the user to purchase insurance,
effectively buying a more confident authentication. The
operator of the trust engine 110 may, at times, only want to
make such an option available if the confidence level of the
authentication is above a certain threshold to begin with. In
effect, this user side insurance is a way for the trust engine
110 to vouch for the user when the authentication meets the
normal required trust level of the trust engine 110 for
authentication, but does not meet the required trust level of
the vendor for this transaction. In this way, the user may still
successfully authenticate to a very high level as may be
required by the vendor, even though he only has authenti-
cation instances which produce confidence sufficient for the
trust engine 110.

This function of the trust engine 110 allows the trust
engine 110 to vouch for someone who is authenticated to the
satisfaction of the trust engine 110, but not of the vendor.
This is analogous to the function performed by a notary in
adding his signature to a document in order to indicate to
someone reading the document at a later time that the person
whose signature appears on the document is in fact the
person who signed it. The signature of the notary testifies to
the act of signing by the user. In the same way, the trust
engine is providing an indication that the person transacting
is who they say they are.

However, because the trust engine 110 is artificially
boosting the level of confidence provided by the user, there
is a greater risk to the trust engine 110 operator, since the
user is not actually meeting the required trust level of the
vendor. The cost of the insurance is designed to offset the
risk of a false positive authentication to the trust engine 110
(who may be effectively notarizing the authentications of the
user). The user pays the trust engine 110 operator to take the
risk of authenticating to a higher level of confidence than has
actually been provided.

Because such an insurance system allows someone to
effectively buy a higher confidence rating from the trust
engine 110, both vendors and users may wish to prevent the
use of user side insurance in certain transactions. Vendors
may wish to limit positive authentications to circumstances
where they know that actual authentication data supports the
degree of confidence which they require and so may indicate
to the trust engine 110 that user side insurance is not to be
allowed. Similarly, to protect his online identity, a user may
wish to prevent the use of user side insurance on his account,



US 9,465,952 B2

45

or may wish to limit its use to situations where the authen-
tication confidence level without the insurance is higher than
a certain limit. This may be used as a security measure to
prevent someone from overhearing a password or stealing a
smart card and using them to falsely authenticate to a low
level of confidence, and then purchasing insurance to pro-
duce a very high level of (false) confidence. These factors
may be evaluated in determining whether user side insur-
ance is allowed.

If user purchases insurance in step 1840, then the authen-
tication confidence level is adjusted based upon the insur-
ance purchased in step 1845, and the authentication confi-
dence level and required trust level are again compared in
step 1730 (see FIG. 17). The process continues from there,
and may lead to either a positive authentication in step 1740
(see FIG. 17), or back into the trust arbitrage process in step
1750 for either further arbitrage (if allowed) or a negative
authentication in step 1810 if further arbitrage is prohibited.

In addition to sending a message to the user in step 1820,
the transaction engine 205 may also send a message to the
vendor in step 1830 which indicates that a pending authen-
tication is currently below the required trust level. The
message may also offer various options on how to proceed
to the vendor. One of these Options is to simply inform the
vendor of what the current authentication confidence level is
and ask if the vendor wishes to maintain their current
unfulfilled required trust level. This may be beneficial
because in some cases, the vendor may have independent
means for authenticating the transaction or may have been
using a default set of requirements which generally result in
a higher required level being initially specified than is
actually needed for the particular transaction at hand.

For instance, it may be standard practice that all incoming
purchase order transactions with the vendor are expected to
meet a 98% trust level. However, if an order was recently
discussed by phone between the vendor and a long-standing
customer, and immediately thereafter the transaction is
authenticated, but only to a 93% confidence level, the
vendor may wish to simply lower the acceptance threshold
for this transaction, because the phone call effectively pro-
vides additional authentication to the vendor. In certain
circumstances, the vendor may be willing to lower their
required trust level, but not all the way to the level of the
current authentication confidence. For instance, the vendor
in the above example might consider that the phone call
prior to the order might merit a 4% reduction in the degree
of trust needed; however, this is still greater than the 93%
confidence produced by the user.

If the vendor does adjust their required trust level in step
1835, then the authentication confidence level produced by
the authentication and the required trust level are compared
in step 1730 (see FIG. 17). If the confidence level now
exceeds the required trust level, a positive authentication
may be generated in the transaction engine 205 in step 1740
(see FIG. 17). If not, further arbitrage may be attempted as
discussed above if it is permitted.

In addition to requesting an adjustment to the required
trust level, the transaction engine 205 may also offer vendor
side insurance to the vendor requesting the authentication.
This insurance serves a similar purpose to that described
above for the user side insurance. Here, however, rather than
the cost corresponding to the risk being taken by the trust
engine 110 in authenticating above the actual authentication
confidence level produced, the cost of the insurance corre-
sponds to the risk being taken by the vendor in accepting a
lower trust level in the authentication.

10

15

20

25

30

35

40

45

50

55

60

65

46

Instead of just lowering their actual required trust level,
the vendor has the option of purchasing insurance to protect
itself from the additional risk associated with a lower level
of trust in the authentication of the user. As described above,
it may be advantageous for the vendor to only consider
purchasing such insurance to cover the trust gap in condi-
tions where the existing authentication is already above a
certain threshold.

The availability of such vendor side insurance allows the
vendor the option to either: lower his trust requirement
directly at no additional cost to himself, bearing the risk of
a false authentication himself (based on the lower trust level
required); or, buying insurance for the trust gap between the
authentication confidence level and his requirement, with
the trust engine 110 operator bearing the risk of the lower
confidence level which has been provided. By purchasing
the insurance, the vendor effectively keeps his high trust
level requirement; because the risk of a false authentication
is shifted to the trust engine 110 operator.

If the vendor purchases insurance in step 1840, the
authentication confidence level and required trust levels are
compared in step 1730 (see FIG. 17), and the process
continues as described above.

Note that it is also possible that both the user and the
vendor respond to messages from the trust engine 110.
Those of skill in the art will recognize that there are multiple
ways in which such situations can be handled. One advan-
tageous mode of handling the possibility of multiple
responses is simply to treat the responses in a first-come,
first-served manner. For example, if the vendor responds
with a lowered required trust level and immediately there-
after the user also purchases insurance to raise his authen-
tication level, the authentication is first reevaluated based
upon the lowered trust requirement from the vendor. If the
authentication is now positive, the user’s insurance purchase
is ignored. In another advantageous mode of operation, the
user might only be charged for the level of insurance
required to meet the new, lowered trust requirement of the
vendor (if a trust gap remained even with the lowered vendor
trust requirement).

If no response from either party is received during the
trust arbitrage process at step 1850 within the time limit set
for the authentication, the arbitrage is reevaluated in step
1805. This effectively begins the arbitrage process again. If
the time limit was final or other circumstances prevent
further arbitrage in step 1805, a negative authentication is
generated by the transaction engine 205 in step 1810 and
returned to the vendor in step 1055 (see FIG. 10). If not, new
messages may be sent to the user and vendor, and the
process may be repeated as desired.

Note that for certain types of transactions, for instance,
digitally signing documents which are not part of a trans-
action, there may not necessarily be a vendor or other third
party; therefore the transaction is primarily between the user
and the trust engine 110. In circumstances such as these, the
trust engine 110 will have its own required trust level which
must be satisfied in order to generate a positive authentica-
tion. However, in such circumstances, it will often not be
desirable for the trust engine 110 to offer insurance to the
user in order for him to raise the confidence of his own
signature.

The process described above and shown in FIGS. 16-18
may be carried out using various communications modes as
described above with reference to the trust engine 110. For
instance, the messages may be web-based and sent using
SSL connections between the trust engine 110 and applets
downloaded in real time to browsers running on the user or



US 9,465,952 B2

47

vendor systems. In an alternate mode of operation, certain
dedicated applications may be in use by the user and vendor
which facilitate such arbitrage and insurance transactions. In
another alternate mode of operation, secure email operations
may be used to mediate the arbitrage described above,
thereby allowing deferred evaluations and batch processing
of authentications. Those of skill in the art will recognize
that different communications modes may be used as are
appropriate for the circumstances and authentication
requirements of the vendor.

The following description with reference to FIG. 19
describes a sample transaction which integrates the various
aspects of the present invention as described above. This
example illustrates the overall process between a user and a
vendor as mediates by the trust engine 110. Although the
various steps and components as described in detail above
may be used to carry out the following transaction, the
process illustrated focuses on the interaction between the
trust engine 110, user and vendor.

The transaction begins when the user, while viewing web
pages online, fills out an order form on the web site of the
vendor in step 1900. The user wishes to submit this order
form to the vendor, signed with his digital signature. In order
to do this, the user submits the order form with his request
for a signature to the trust engine 110 in step 1905. The user
will also provide authentication data which will be used as
described above to authenticate his identity.

In step 1910 the authentication data is compared to the
enrollment data by the trust engine 110 as discussed above,
and if a positive authentication is produced, the hash of the
order form, signed with the private key of the user, is
forwarded to the vendor along with the order form itself.

The vendor receives the signed form in step 1915, and
then the vendor will generate an invoice or other contract
related to the purchase to be made in step 1920. This contract
is sent back to the user with a request for a signature in step
1925. The vendor also sends an authentication request for
this contract transaction to the trust engine 110 in step 1930
including a hash of the contract which will be signed by both
parties. To allow the contract to be digitally signed by both
parties, the vendor also includes authentication data for itself
so that the vendor’s signature upon the contract can later be
verified if necessary.

As discussed above, the trust engine 110 then verifies the
authentication data provided by the vendor to confirm the
vendor’s identity, and if the data produces a positive authen-
tication in step 1935, continues with step 1955 when the data
is received from the user. If the vendor’s authentication data
does not match the enrollment data of the vendor to the
desired degree, a message is returned to the vendor request-
ing further authentication. Trust arbitrage may be performed
here if necessary, as described above, in order for the vendor
to successfully authenticate itself to the trust engine 110.

When the user receives the contract in step 1940, he
reviews it, generates authentication data to sign it if it is
acceptable in step 1945, and then sends a hash of the contract
and his authentication data to the trust engine 110 in step
1950. The trust engine 110 verifies the authentication data in
step 1955 and if the authentication is good, proceeds to
process the contract as described below. As discussed above
with reference to FIGS. 17 and 18, trust arbitrage may be
performed as appropriate to close any trust gap which exists
between the authentication confidence level and the required
authentication level for the transaction.

The trust engine 110 signs the hash of the contract with
the user’s private key, and sends this signed hash to the
vendor in step 1960, signing the complete message on its

10

15

20

25

30

35

40

45

50

55

60

65

48

own behalf, i.e., including a hash of the complete message
(including the user’s signature) encrypted with the private
key 510 of the trust engine 110. This message is received by
the vendor in step 1965. The message represents a signed
contract (hash of contract encrypted using user’s private
key) and a receipt from the trust engine 110 (the hash of the
message including the signed contract, encrypted using the
trust engine 110°s private key).

The trust engine 110 similarly prepares a hash of the
contract with the vendor’s private key in step 1970, and
forwards this to the user, signed by the trust engine 110. In
this way, the user also receives a copy of the contract, signed
by the vendor, as well as a receipt, signed by the trust engine
110, for delivery of the signed contract in step 1975.

In addition to the foregoing, an additional aspect of the
invention provides a cryptographic Service Provider Module
(SPM) which may be available to a client side application as
a means to access functions provided by the trust engine 110
described above. One advantageous way to provide such a
service is for the cryptographic SPM is to mediate commu-
nications between a third party Application Programming
Interface (API) and a trust engine 110 which is accessible via
a network or other remote connection. A sample crypto-
graphic SPM is described below with reference to FIG. 20.

For example, on a typical system, a number of API’s are
available to programmers. Each API provides a set of
function calls which may be made by an application 2000
running upon the system. Examples of API’s which provide
programming interfaces suitable for cryptographic func-
tions, authentication functions, and other security function
include the Cryptographic API (CAPI) 2010 provided by
Microsoft with its Windows operating systems, and the
Common Data Security Architecture (CDSA), sponsored by
IBM, Intel and other members of the Open Group. CAPI will
be used as an exemplary security API in the discussion that
follows. However, the cryptographic SPM described could
be used with CDSA or other security API’s as are known in
the art.

This API is used by a user system 105 or vendor system
120 when a call is made for a cryptographic function.
Included among these functions may be requests associated
with performing various cryptographic operations, such as
encrypting a document with a particular key, signing a
document, requesting a digital certificate, verifying a signa-
ture upon a signed document, and such other cryptographic
functions as are described herein or known to those of skill
in the art.

Such cryptographic functions are normally performed
locally to the system upon which CAPI 2010 is located. This
is because generally the functions called require the use of
either resources of the local user system 105, such as a
fingerprint reader, or software functions which are pro-
grammed using libraries which are executed on the local
machine. Access to these local resources is normally pro-
vided by one or more Service Provider Modules (SPM’s)
2015, 2020 as referred to above which provide resources
with which the cryptographic functions are carried out. Such
SPM’s may include software libraries 2015 to perform
encrypting or decrypting operations, or drivers and applica-
tions 2020 which are capable of accessing specialized hard-
ware 2025, such as biometric scanning devices. In much the
way that CAPI 2010 provides functions which may be used
by an application 2000 of the system 105, the SPM’s 2015,
2020 provide CAPI with access to the lower level functions
and resources associated with the available services upon the
system.



US 9,465,952 B2

49

In accordance with the invention, it is possible to provide
a cryptographic SPM 2030 which is capable of accessing the
cryptographic functions provided by the trust engine 110 and
making these functions available to an application 2000
through CAPI 2010. Unlike embodiments where CAP12010
is only able to access resources which are locally available
through SPM’s 2015, 2020, a cryptographic SPM 2030 as
described herein would be able to submit requests for
cryptographic operations to a remotely-located, network-
accessible trust engine 110 in order to perform the opera-
tions desired.

For instance, if an application 2000 has a need for a
cryptographic operation, such as signing a document, the
application 2000 makes a function call to the appropriate
CAPI 2010 function. CAPI 2010 in turn will execute this
function, making use of the resources which are made
available to it by the SPM’s 2015, 2020 and the crypto-
graphic SPM 2030. In the case of a digital signature func-
tion, the cryptographic SPM 2030 will generate an appro-
priate request which will be sent to the trust engine 110
across the communication link 125.

The operations which occur between the cryptographic
SPM 2030 and the trust engine 110 are the same operations
that would be possible between any other system and the
trust engine 110. However, these functions are effectively
made available to a user system 105 through CAPI 2010
such that they appear to be locally available upon the user
system 105 itself. However, unlike ordinary SPM’s 2015,
2020, the functions are being carried out on the remote trust
engine 110 and the results relayed to the cryptographic SPM
2030 in response to appropriate requests across the commu-
nication link 125.

This cryptographic SPM 2030 makes a number of opera-
tions available to the user system 105 or a vendor system
120 which might not otherwise be available. These functions
include without limitation: encryption and decryption of
documents; issuance of digital certificates; digital signing of
documents; verification of digital signatures; and such other
operations as will be apparent to those of skill in the art.

In a separate embodiment, the present invention com-
prises a complete system for performing the data securing
methods of the present invention on any data set. The
computer system of this embodiment comprises a data
splitting module that comprises the functionality shown in
FIG. 8 and described herein. In one embodiment of the
present invention, the data splitting module, sometimes
referred to herein as a secure data parser, comprises a parser
program or software suite which comprises data splitting,
encryption and decryption, reconstitution or reassembly
functionality. This embodiment may further comprise a data
storage facility or multiple data storage facilities, as well.
The data splitting module, or secure data parser, comprises
a cross-platform software module suite which integrates
within an electronic infrastructure, or as an add-on to any
application which requires the ultimate security of its data
elements. This parsing process operates on any type of data
set, and on any and all file types, or in a database on any row,
column or cell of data in that database.

The parsing process of the present invention may, in one
embodiment, be designed in a modular tiered fashion, and
any encryption process is suitable for use in the process of
the present invention. The modular tiers of the parsing and
splitting process of the present invention may include, but
are not limited to, 1) cryptographic split, dispersed and
securely stored in multiple locations; 2) encrypt, crypto-
graphically split, dispersed and securely stored in multiple
locations; 3) encrypt, cryptographically split, encrypt each

20

40

45

50

share, then dispersed and securely stored in multiple loca-
tions; and 4) encrypt, cryptographically split, encrypt each
share with a different type of encryption than was used in the
first step, then dispersed and securely stored in multiple
locations.

The process comprises, in one embodiment, splitting of
the data according to the contents of a generated random
number, or key and performing the same cryptographic
splitting of the key used in the encryption of splitting of the
data to be secured into two or more portions, or shares, of
parsed and split data, and in one embodiment, preferably
into four or more portions of parsed and split data, encrypt-
ing all of the portions, then scattering and storing these
portions back into the database, or relocating them to any
named device, fixed or removable, depending on the
requestor’s need for privacy and security. Alternatively, in
another embodiment, encryption may occur prior to the
splitting of the data set by the splitting module or secure data
parser. The original data processed as described in this
embodiment is encrypted and obfuscated and is secured. The
dispersion of the encrypted elements, if desired, can be
virtually anywhere, including, but not limited to, a single
server or data storage device, or among separate data storage
facilities or devices. Encryption key management in one
embodiment may be included within the software suite, or in
another embodiment may be integrated into an existing
infrastructure or any other desired location.

A cryptographic split (cryptosplit) partitions the data into
N number of shares. The partitioning can be on any size unit
of data, including an individual bit, bits, bytes, kilobytes,
megabytes, or larger units, as well as any pattern or com-
bination of data unit sizes whether predetermined or ran-
domly generated. The units can also be of different sized,
based on either a random or predetermined set of values.
This means the data can be viewed as a sequence of these
units. In this manner the size of the data units themselves
may render the data more secure, for example by using one
or more predetermined or randomly generated pattern,
sequence or combination of data unit sizes. The units are
then distributed (either randomly or by a predetermined set
of values) into the N shares. This distribution could also
involve a shuffling of the order of the units in the shares. It
is readily apparent to those of ordinary skill in the art that the
distribution of the data units into the shares may be per-
formed according to a wide variety of possible selections,
including but not limited to size-fixed, predetermined sizes,
or one or more combination, pattern or sequence of data unit
sizes that are predetermined or randomly generated.

One example of this cryptographic split process, or cryp-
tosplit, would be to consider the data to be 23 bytes in size,
with the data unit size chosen to be one byte, and with the
number of shares selected to be 4. Each byte would be
distributed into one of the 4 shares. Assuming a random
distribution, a key would be obtained to create a sequence of
23 random numbers (rl, r2, r3 through r23), each with a
value between 1 and 4 corresponding to the four shares.
Each of the units of data (in this example 23 individual bytes
of data) is associated with one of the 23 random numbers
corresponding to one of the four shares.

The distribution of the bytes of data into the four shares
would occur by placing the first byte of the data into share
number rl, byte two into share r2, byte three into share r3,
through the 23’7 byte of data into share r23. It is readily
apparent to those of ordinary skill in the art that a wide
variety of other possible steps or combination or sequence of
steps, including the size of the data units, may be used in the
cryptosplit process of the present invention, and the above



US 9,465,952 B2

51

example is a non-limiting description of one process for
cryptosplitting data. To recreate the original data, the reverse
operation would be performed.

In another embodiment of the cryptosplit process of the
present invention, an option for the cryptosplitting process is
to provide sufficient redundancy in the shares such that only
a subset of the shares are needed to reassemble or restore the
data to its original or useable form. As a non-limiting
example, the cryptosplit may be done as a “3 of 4” cryp-
tosplit such that only three of the four shares are necessary
to reassemble or restore the data to its original or useable
form. This is also referred to as a “M of N cryptosplit”
wherein N is the total number of shares, and M is at least one
less than N. It is readily apparent to those of ordinary skill
in the art that there are many possibilities for creating this
redundancy in the cryptosplitting process of the present
invention.

In one embodiment of the cryptosplitting process of the
present invention, each unit of data is stored in two shares,
the primary share and the backup share. Using the “3 of 4”
cryptosplitting process described above, any one share can
be missing, and this is sufficient to reassemble or restore the
original data with no missing data units since only three of
the total four shares are required. As described herein, a
random number is generated that corresponds to one of the
shares. The random number is associated with a data unit,
and stored in the corresponding share, based on a key. One
key is used, in this embodiment, to generate the primary and
backup share random number. As described herein for the
cryptosplitting process of the present invention, a set of
random numbers (also referred to as primary share numbers)
from O to 3 are generated equal to the number of data units.
Then another set of random numbers is generated (also
referred to as backup share numbers) from 1 to 3 equal to the
number of data units. Each unit of data is then associated
with a primary share number and a backup share number.
Alternatively, a set of random numbers may be generated
that is fewer than the number of data units, and repeating the
random number set, but this may reduce the security of the
sensitive data. The primary share number is used to deter-
mine into which share the data unit is stored. The backup
share number is combined with the primary share number to
create a third share number between O and 3, and this
number is used to determine into which share the data unit
is stored. In this example, the equation to determine the third
share number is:

(primary share number+backup share number)MOD
4=third share number.

In the embodiment described above where the primary
share number is between 0 and 3, and the backup share
number is between 1 and 3 ensures that the third share
number is different from the primary share number. This
results in the data unit being stored in two different shares.
It is readily apparent to those of ordinary skill in the art that
there are many ways of performing redundant cryptosplit-
ting and non-redundant cryptosplitting in addition to the
embodiments disclosed herein. For example, the data units
in each share could be shuffled utilizing a different algo-
rithm. This data unit shuffling may be performed as the
original data is split into the data units, or after the data units
are placed into the shares, or after the share is full, for
example.

The various cryptosplitting processes and data shuffling
processes described herein, and all other embodiments of the
cryptosplitting and data shuffling methods of the present
invention may be performed on data units of any size,

10

15

20

25

30

35

40

45

50

55

60

65

52

including but not limited to, as small as an individual bit,
bits, bytes, kilobytes, megabytes or larger.

An example of one embodiment of source code that
would perform the cryptosplitting process described herein
is:

DATA [1:24] - array of bytes with the data to be split
SHARES[0:3; 1:24] - 2-dimensionalarray with each row representing one
of
the shares
RANDOM][1:24] - array random numbers in the range of 0..3
S1 =1;
82 =1;
83 =1;
S4 =1;
ForJ=1to 24 do
Begin
IF RANDOM[J[ ==0 then
Begin
SHARES[1,S1] = DATA [I];
S1 =S1+1;
End
ELSE IF RANDOM[J[ ==1 then
Begin
SHARES[2,S2] = DATA [I];
S2 =82 +1;
END
ELSE IF RANDOM[J[ ==2 then
Begin
Shares[3,53] = data [J];
S3 =83 +1;
End
Else begin
Shares[4,54] = data [J];
S4 =84 +1;
End;
END;

An example of one embodiment of source code that
would perform the cryptosplitting RAID process described
herein is:

Generate two sets of numbers, PrimaryShare is 0 to 3,
BackupShare is 1 to 3. Then put each data unit into share
[primaryshare[1]] and share[(primaryshare[1]+backupshare
[1]) mod 4, with the same process as in cryptosplitting
described above. This method will be scalable to any size N,
where only N-1 shares are necessary to restore the data.

The retrieval, recombining, reassembly or reconstituting
of the encrypted data elements may utilize any number of
authentication techniques, including, but not limited to,
biometrics, such as fingerprint recognition, facial scan, hand
scan, iris scan, retinal scan, ear scan, vascular pattern
recognition or DNA analysis. The data splitting and/or
parser modules of the present invention may be integrated
into a wide variety of infrastructure products or applications
as desired.

Traditional encryption technologies known in the art rely
on one or more key used to encrypt the data and render it
unusable without the key. The data, however, remains whole
and intact and subject to attack. The secure data parser of the
present invention, in one embodiment, addresses this prob-
lem by performing a cryptographic parsing and splitting of
the encrypted file into two or more portions or shares, and
in another embodiment, preferably four or more shares,
adding another layer of encryption to each share of the data,
then storing the shares in different physical and/or logical
locations. When one or more data shares are physically
removed from the system, either by using a removable
device, such as a data storage device, or by placing the share
under another party’s control, any possibility of compromise
of secured data is effectively removed.



US 9,465,952 B2

53

An example of one embodiment of the secure data parser
of the present invention and an example of how it may be
utilized is shown in FIG. 21 and described below. However,
it is readily apparent to those of ordinary skill in the art that
the secure data parser of the present invention may be
utilized in a wide variety of ways in addition to the non-
limiting example below. As a deployment option, and in one
embodiment, the secure data parser may be implemented
with external session key management or secure internal
storage of session keys. Upon implementation, a Parser
Master Key will be generated which will be used for
securing the application and for encryption purposes. It
should be also noted that the incorporation of the Parser
Master key in the resulting secured data allows for a
flexibility of sharing of secured data by individuals within a
workgroup, enterprise or extended audience.

As shown in FIG. 21, this embodiment of the present
invention shows the steps of the process performed by the
secure data parser on data to store the session master key
with the parsed data:

1. Generating a session master key and encrypt the data
using RS1 stream cipher.

2. Separating the resulting encrypted data into four shares
or portions of parsed data according to the pattern of the
session master key.

3. In this embodiment of the method, the session master
key will be stored along with the secured data shares in a
data depository. Separating the session master key according
to the pattern of the Parser Master Key and append the key
data to the encrypted parsed data.

4. The resulting four shares of data will contain encrypted
portions of the original data and portions of the session
master key. Generate a stream cipher key for each of the four
data shares.

5. Encrypting each share, then store the encryption keys
in different locations from the encrypted data portions or
shares: Share 1 gets Key 4, Share 2 gets Key 1, Share 3 gets
Key 2, Share 4 gets Key 3.

To restore the original data format, the steps are reversed.

It is readily apparent to those of ordinary skill in the art
that certain steps of the methods described herein may be
performed in different order, or repeated multiple times, as
desired. It is also readily apparent to those skilled in the art
that the portions of the data may be handled differently from
one another. For example, multiple parsing steps may be
performed on only one portion of the parsed data. Each
portion of parsed data may be uniquely secured in any
desirable way provided only that the data may be reas-
sembled, reconstituted, reformed, decrypted or restored to
its original or other usable form.

As shown in FIG. 22 and described herein, another
embodiment of the present invention comprises the steps of
the process performed by the secure data parser on data to
store the session master key data in one or more separate key
management table:

1. Generating a session master key and encrypt the data
using RS1 stream cipher.

2. Separating the resulting encrypted data into four shares
or portions of parsed data according to the pattern of the
session master key.

3. In this embodiment of the method of the present
invention, the session master key will be stored in a separate
key management table in a data depository. Generating a
unique transaction ID for this transaction. Storing the trans-
action ID and session master key in a separate key manage-
ment table. Separating the transaction ID according to the

10

15

20

25

30

35

40

45

50

55

60

65

54

pattern of the Parser Master Key and append the data to the
encrypted parsed or separated data.

4. The resulting four shares of data will contain encrypted
portions of the original data and portions of the transaction
D.

5. Generating a stream cipher key for each of the four data
shares.

6. Encrypting each share, then store the encryption keys
in different locations from the encrypted data portions or
shares: Share 1 gets Key 4, Share 2 gets Key 1, Share 3 gets
Key 2, Share 4 gets Key 3.

To restore the original data format, the steps are reversed.

It is readily apparent to those of ordinary skill in the art
that certain steps of the method described herein may be
performed in different order, or repeated multiple times, as
desired. It is also readily apparent to those skilled in the art
that the portions of the data may be handled differently from
one another. For example, multiple separating or parsing
steps may be performed on only one portion of the parsed
data. Each portion of parsed data may be uniquely secured
in any desirable way provided only that the data may be
reassembled, reconstituted, reformed, decrypted or restored
to its original or other usable form.

As shown in FIG. 23, this embodiment of the present
invention shows the steps of the process performed by the
secure data parser on data to store the session master key
with the parsed data:

1. Accessing the parser master key associated with the
authenticated user

2. Generating a unique Session Master key

3. Derive an Intermediary Key from an exclusive OR
function of the Parser Master Key and Session Master key

4. Optional encryption of the data using an existing or
new encryption algorithm keyed with the Intermediary Key.

5. Separating the resulting optionally encrypted data into
four shares or portions of parsed data according to the
pattern of the Intermediary key.

6. In this embodiment of the method, the session master
key will be stored along with the secured data shares in a
data depository. Separating the session master key according
to the pattern of the Parser Master Key and append the key
data to the optionally encrypted parsed data shares.

7. The resulting multiple shares of data will contain
optionally encrypted portions of the original data and por-
tions of the session master key.

8. Optionally generate an encryption key for each of the
four data shares.

9. Optionally encrypting each share with an existing or
new encryption algorithm, then store the encryption keys in
different locations from the encrypted data portions or
shares: for example, Share 1 gets Key 4, Share 2 gets Key
1, Share 3 gets Key 2, Share 4 gets Key 3.

To restore the original data format, the steps are reversed.

It is readily apparent to those of ordinary skill in the art
that certain steps of the methods described herein may be
performed in different order, or repeated multiple times, as
desired. It is also readily apparent to those skilled in the art
that the portions of the data may be handled differently from
one another. For example, multiple parsing steps may be
performed on only one portion of the parsed data. Each
portion of parsed data may be uniquely secured in any
desirable way provided only that the data may be reas-
sembled, reconstituted, reformed, decrypted or restored to
its original or other usable form.

As shown in FIG. 24 and described herein, another
embodiment of the present invention comprises the steps of



US 9,465,952 B2

55

the process performed by the secure data parser on data to
store the session master key data in one or more separate key
management table:

1. Accessing the Parser Master Key associated with the
authenticated user

2. Generating a unique Session Master Key

3. Derive an Intermediary Key from an exclusive OR
function of the Parser Master Key and Session Master key

4. Optionally encrypt the data using an existing or new
encryption algorithm keyed with the Intermediary Key.

5. Separating the resulting optionally encrypted data into
four shares or portions of parsed data according to the
pattern of the Intermediary Key.

6. In this embodiment of the method of the present
invention, the session master key will be stored in a separate
key management table in a data depository. Generating a
unique transaction ID for this transaction. Storing the trans-
action ID and session master key in a separate key manage-
ment table or passing the Session Master Key and transac-
tion ID back to the calling program for external
management. Separating the transaction ID according to the
pattern of the Parser Master Key and append the data to the
optionally encrypted parsed or separated data.

7. The resulting four shares of data will contain optionally
encrypted portions of the original data and portions of the
transaction ID.

8. Optionally generate an encryption key for each of the
four data shares.

9. Optionally encrypting each share, then store the
encryption keys in different locations from the encrypted
data portions or shares. For example: Share 1 gets Key 4,
Share 2 gets Key 1, Share 3 gets Key 2, Share 4 gets Key 3.

To restore the original data format, the steps are reversed.

It is readily apparent to those of ordinary skill in the art
that certain steps of the method described herein may be
performed in different order, or repeated multiple times, as
desired. It is also readily apparent to those skilled in the art
that the portions of the data may be handled differently from
one another. For example, multiple separating or parsing
steps may be performed on only one portion of the parsed
data. Each portion of parsed data may be uniquely secured
in any desirable way provided only that the data may be
reassembled, reconstituted, reformed, decrypted or restored
to its original or other usable form.

A wide variety of encryption methodologies are suitable
for use in the methods of the present invention, as is readily
apparent to those skilled in the art. The One Time Pad
algorithm, is often considered one of the most secure
encryption methods, and is suitable for use in the method of
the present invention. Using the One Time Pad algorithm
requires that a key be generated which is as long as the data
to be secured. The use of this method may be less desirable
in certain circumstances such as those resulting in the
generation and management of very long keys because of
the size of the data set to be secured. In the One-Time Pad
(OTP) algorithm, the simple exclusive-or function, XOR, is
used. For two binary streams x and y of the same length, x
XOR y means the bitwise exclusive-or of x and y.

At the bit level is generated:

0 XOR 0=0
0 XOR 1=1
1 XOR 0=1
1 XOR 1=0

An example of this process is described herein for an
n-byte secret, s, (or data set) to be split. The process will
generate an n-byte random value, a, and then set:
b=a XOR s.

10

15

20

25

30

35

40

45

50

55

60

65

56

[Tt}

Note that one can derive “s
s=a XOR b.

The values a and b are referred to as shares or portions and
are placed in separate depositories. Once the secret s is split
into two or more shares, it is discarded in a secure manner.

The secure data parser of the present invention may utilize
this function, performing multiple XOR functions incorpo-
rating multiple distinct secret key values: K1, K2, K3, Kn,
K5. At the beginning of the operation, the data to be secured
is passed through the first encryption operation, secure
data=data XOR secret key 5:

S=D XOR K5

In order to securely store the resulting encrypted data in,
for example, four shares, S1, S2, S3, Sn, the data is parsed
and split into “n” segments, or shares, according to the value
of K5. This operation results in “n” pseudorandom shares of
the original encrypted data. Subsequent XOR functions may
then be performed on each share with the remaining secret
key values, for example: Secure data segment 1=encrypted
data share 1 XOR secret key 1:

SD1=S1 XOR K1
SD2=S2 XOR K2
SD3=S3 XOR K3
SDn=Sn XOR Kn.

In one embodiment, it may not be desired to have any one
depository contain enough information to decrypt the infor-
mation held there, so the key required to decrypt the share
is stored in a different data depository:

Depository 1: SD1, Kn
Depository 2: SD2, K1
Depository 3: SD3, K2
Depository n: SDn, K3.

Additionally, appended to each share may be the infor-
mation required to retrieve the original session encryption
key, K5. Therefore, in the key management example
described herein, the original session master key is refer-
enced by a transaction ID split into “n” shares according to
the contents of the installation dependant Parser Master Key
(TID1, TID2, TID3, TIDn):

Depository 1: SD1, Kn, TID1
Depository 2: SD2, K1, TID2
Depository 3: SD3, K2, TID3
Depository n: SDn, K3, TIDn.

In the incorporated session key example described herein,
the session master key is split into “n” shares according to
the contents of the installation dependant Parser Master Key
(SK1, SK2, SK3, SKn):

Depository 1: SD1, Kn, SK1
Depository 2: SD2, K1, SK2
Depository 3: SD3, K2, SK3
Depository n: SDn, K3, SKn.

Unless all four shares are retrieved, the data cannot be
reassembled according to this example. Even if all four
shares are captured, there is no possibility of reassembling
or restoring the original information without access to the
session master key and the Parser Master Key.

This example has described an embodiment of the method
of the present invention, and also describes, in another
embodiment, the algorithm used to place shares into deposi-
tories so that shares from all depositories can be combined
to form the secret authentication material. The computations
needed are very simple and fast. However, with the One
Time Pad (OTP) algorithm there may be circumstances that
cause it to be less desirable, such as a large data set to be
secured, because the key size is the same size as the data to
be stored. Therefore, there would be a need to store and

via the equation:



US 9,465,952 B2

57

transmit about twice the amount of the original data which
may be less desirable under certain circumstances.
Stream Cipher RS1

The stream cipher RS1 splitting technique is very similar
to the OTP splitting technique described herein. Instead of
an n-byte random value, an n'=min(n, 16)-byte random value
is generated and used to key the RS1 Stream Cipher algo-
rithm. The advantage of the RS1 Stream Cipher algorithm is
that a pseudorandom key is generated from a much smaller
seed number. The speed of execution of the RS1 Stream
Cipher encryption is also rated at approximately 10 times the
speed of the well known in the art Triple DES encryption
without compromising security. The RS1 Stream Cipher
algorithm is well known in the art, and may be used to
generate the keys used in the XOR function. The RS1
Stream Cipher algorithm is interoperable with other com-
mercially available stream cipher algorithms, such as the
RC4™ stream cipher algorithm of RSA Security, Inc and is
suitable for use in the methods of the present invention.

Using the key notation above, K1 thru K5 are now an n'
byte random values and we set:

SD1=S1 XOR E(K1)

SD2=S2 XOR E(K2)

SD3=S3 XOR E(K3)

SDn=Sn XOR E(Kn)

where E(K1) thru E(Kn) are the first n' bytes of output from
the RS1 Stream Cipher algorithm keyed by K1 thru Kn.

The shares are now placed into data depositories as

described herein.

In this stream cipher RS1 algorithm, the required com-
putations needed are nearly as simple and fast as the OTP
algorithm. The benefit in this example using the RS1 Stream
Cipher is that the system needs to store and transmit on
average only about 16 bytes more than the size of the
original data to be secured per share. When the size of the
original data is more than 16 bytes, this RS1 algorithm is
more efficient than the OTP algorithm because it is simply
shorter. It is readily apparent to those of ordinary skill in the
art that a wide variety of encryption methods or algorithms
are suitable for use in the present invention, including, but
not limited to RS1, OTP, RC4™, Triple DES and AES.

There are major advantages provided by the data security
methods and computer systems of the present invention over
traditional encryption methods. One advantage is the secu-
rity gained from moving shares of the data to different
locations on one or more data depositories or storage
devices, that may be in different logical, physical or geo-
graphical locations. When the shares of data are split physi-
cally and under the control of different personnel, for
example, the possibility of compromising the data is greatly
reduced.

Another advantage provided by the methods and system
of'the present invention is the combination of the steps of the
method of the present invention for securing data to provide
a comprehensive process of maintaining security of sensitive
data. The data is encrypted with a secure key and split into
one or more shares, and in one embodiment, four shares,
according to the secure key. The secure key is stored safely
with a reference pointer which is secured into four shares
according to a secure key. The data shares are then encrypted
individually and the keys are stored safely with different
encrypted shares. When combined, the entire process for
securing data according to the methods disclosed herein
becomes a comprehensive package for data security.

The data secured according to the methods of the present
invention is readily retrievable and restored, reconstituted,
reassembled, decrypted, or otherwise returned into its origi-

5

10

15

20

25

30

35

40

45

50

55

60

65

58

nal or other suitable form for use. In order to restore the
original data, the following items may be utilized:

1. All shares or portions of the data set.

2. Knowledge of and ability to reproduce the process flow
of the method used to secure the data.

3. Access to the session master key.

4. Access to the Parser Master Key.

Therefore, it may be desirable to plan a secure installation
wherein at least one of the above elements may be physically
separated from the remaining components of the system
(under the control of a different system administrator for
example).

Protection against a rogue application invoking the data
securing methods application may be enforced by use of the
Parser Master Key. A mutual authentication handshake
between the secure data parser and the application may be
required in this embodiment of the present invention prior to
any action taken.

The security of the system dictates that there be no
“backdoor” method for recreation of the original data. For
installations where data recovery issues may arise, the
secure data parser can be enhanced to provide a mirror of the
four shares and session master key depository. Hardware
options such as RAID (redundant array of inexpensive disks,
used to spread information over several disks) and software
options such as replication can assist as well in the data
recovery planning
Key Management

In one embodiment of the present invention, the data
securing method uses three sets of keys for an encryption
operation. Each set of keys may have individual key storage,
retrieval, security and recovery options, based on the instal-
lation. The keys that may be used, include, but are not
limited to:

The Parser Master Key

This key is an individual key associated with the instal-
lation of the secure data parser. It is installed on the server
on which the secure data parser has been deployed. There are
a variety of options suitable for securing this key including,
but not limited to, a smart card, separate hardware key store,
standard key stores, custom key stores or within a secured
database table, for example.

The Session Master Key

A Session Master Key may be generated each time data is
secured. The Session Master Key is used to encrypt the data
prior to the parsing and splitting operations. It may also be
incorporated (if the Session Master Key is not integrated
into the parsed data) as a means of parsing the encrypted
data. The Session Master Key may be secured in a variety of
manners, including, but not limited to, a standard key store,
custom key store, separate database table, or secured within
the encrypted shares, for example.

The Share Encryption Keys

For each share or portions of a data set that is created, an
individual Share Encryption Key may be generated to fur-
ther encrypt the shares. The Share Encryption Keys may be
stored in different shares than the share that was encrypted.

It is readily apparent to those of ordinary skill in the art
that the data securing methods and computer system of the
present invention are widely applicable to any type of data
in any setting or environment. In addition to commercial
applications conducted over the Internet or between custom-
ers and vendors, the data securing methods and computer
systems of the present invention are highly applicable to
non-commercial or private settings or environments. Any
data set that is desired to be kept secure from any unauthor-
ized user may be secured using the methods and systems



US 9,465,952 B2

59

described herein. For example, access to a particular data-
base within a company or organization may be advanta-
geously restricted to only selected users by employing the
methods and systems of the present invention for securing
data. Another example is the generation, modification or
access to documents wherein it is desired to restrict access
or prevent unauthorized or accidental access or disclosure
outside a group of selected individuals, computers or work-
stations. These and other examples of the ways in which the
methods and systems of data securing of the present inven-
tion are applicable to any non-commercial or commercial
environment or setting for any setting, including, but not
limited to any organization, government agency or corpo-
ration.

In another embodiment of the present invention, the data
securing method uses three sets of keys for an encryption
operation. Each set of keys may have individual key storage,
retrieval, security and recovery options, based on the instal-
lation. The keys that may be used, include, but are not
limited to:

The Parser Master Key

This key is an individual key associated with the instal-
lation of the secure data parser. It is installed on the server
on which the secure data parser has been deployed. There are
a variety of options suitable for securing this key including,
but not limited to, a smart card, separate hardware key store,
standard key stores, custom key stores or within a secured
database table, for example.

The Session Master Key

A Session Master Key may be generated each time data is
secured. The Session Master Key is used in conjunction with
the Parser Master key to derive the Intermediary Key. The
Session Master Key may be secured in a variety of manners,
including, but not limited to, a standard key store, custom
key store, separate database table, or secured within the
encrypted shares, for example.

The Intermediary Key

An Intermediary Key may be generated each time data is
secured. The Intermediary Key is used to encrypt the data
prior to the parsing and splitting operation. It may also be
incorporated as a means of parsing the encrypted data.
The Share Encryption Keys

For each share or portions of a data set that is created, an
individual Share Encryption Key may be generated to fur-
ther encrypt the shares. The Share Encryption Keys may be
stored in different shares than the share that was encrypted.

It is readily apparent to those of ordinary skill in the art
that the data securing methods and computer system of the
present invention are widely applicable to any type of data
in any setting or environment. In addition to commercial
applications conducted over the Internet or between custom-
ers and vendors, the data securing methods and computer
systems of the present invention are highly applicable to
non-commercial or private settings or environments. Any
data set that is desired to be kept secure from any unauthor-
ized user may be secured using the methods and systems
described herein. For example, access to a particular data-
base within a company or organization may be advanta-
geously restricted to only selected users by employing the
methods and systems of the present invention for securing
data. Another example is the generation, modification or
access to documents wherein it is desired to restrict access
or prevent unauthorized or accidental access or disclosure
outside a group of selected individuals, computers or work-
stations. These and other examples of the ways in which the
methods and systems of data securing of the present inven-
tion are applicable to any non-commercial or commercial

10

15

20

25

30

35

40

45

50

55

60

65

60

environment or setting for any setting, including, but not
limited to any organization, government agency or corpo-
ration.

Workgroup, Project, Individual PC/Laptop or Cross Plat-
form Data Security

The data securing methods and computer systems of the
present invention are also useful in securing data by work-
group, project, individual PC/Laptop and any other platform
that is in use in, for example, businesses, offices, government
agencies, or any setting in which sensitive data is created,
handled or stored. The present invention provides methods
and computer systems to secure data that is known to be
sought after by organizations, such as the U.S. Government,
for implementation across the entire government organiza-
tion or between governments at a state or federal level.

The data securing methods and computer systems of the
present invention provide the ability to not only parse and
split flat files but also data fields, sets and or table of any
type. Additionally, all forms of data are capable of being
secured under this process, including, but not limited to,
text, video, images, biometrics and voice data. Scalability,
speed and data throughput of the methods of securing data
of the present invention are only limited to the hardware the
user has at their disposal.

In one embodiment of the present invention, the data
securing methods are utilized as described below in a
workgroup environment. In one embodiment, as shown in
FIG. 23 and described below, the Workgroup Scale data
securing method of the present invention uses the private
key management functionality of the TrustEngine to store
the user/group relationships and the associated private keys
(Parser Group Master Keys) necessary for a group of users
to share secure data. The method of the present invention has
the capability to secure data for an enterprise, workgroup, or
individual user, depending on how the Parser Master Key
was deployed.

In one embodiment, additional key management and
user/group management programs may be provided,
enabling wide scale workgroup implementation with a
single point of administration and key management. Key
generation, management and revocation are handled by the
single maintenance program, which all become especially
important as the number of users increase. In another
embodiment, key management may also be set up across one
or several different system administrators, which may not
allow any one person or group to control data as needed.
This allows for the management of secured data to be
obtained by roles, responsibilities, membership, rights, etc.,
as defined by an organization, and the access to secured data
can be limited to just those who are permitted or required to
have access only to the portion they are working on, while
others, such as managers or executives, may have access to
all of the secured data. This embodiment allows for the
sharing of secured data among different groups within a
company or organization while at the same time only
allowing certain selected individuals, such as those with the
authorized and predetermined roles and responsibilities, to
observe the data as a whole. In addition, this embodiment of
the methods and systems of the present invention also allows
for the sharing of data among, for example, separate com-
panies, or separate departments or divisions of companies,
or any separate organization departments, groups, agencies,
or offices, or the like, of any government or organization or
any kind, where some sharing is required, but not any one
party may be permitted to have access to all the data.
Particularly apparent examples of the need and utility for
such a method and system of the present invention are to



US 9,465,952 B2

61

allow sharing, but maintain security, in between government
areas, agencies and offices, and between different divisions,
departments or offices of a large company, or any other
organization, for example.

An example of the applicability of the methods of the
present invention on a smaller scale is as follows. A Parser
Master key is used as a serialization or branding of the
secure data parser to an organization. As the scale of use of
the Parser Master key is reduced from the whole enterprise
to a smaller workgroup, the data securing methods described
herein are used to share files within groups of users.

In the example shown in FIG. 25 and described below,
there are six users defined along with their title or role within
the organization. The side bar represents five possible
groups that the users can belong to according to their role.
The arrow represents membership by the user in one or more
of the groups.

When configuring the secure data parser for use in this
example, the system administrator accesses the user and
group information from the operating system by a mainte-
nance program. This maintenance program generates and
assigns Parser Group Master Keys to users based on their
membership in groups.

In this example, there are three members in the Senior
Staff group. For this group, the actions would be:

1. Access Parser Group Master Key for the Senior Staff
group (generate a key if not available);

2. Generate a digital certificate associating CEO with the
Senior Staff group;

3. Generate a digital certificate associating CFO with the
Senior Staff group;

4. Generate a digital certificate associating Vice President,
Marketing with the Senior Staff group.

The same set of actions would be done for each group, and
each member within each group.

When the maintenance program is complete, the Parser
Group Master Key becomes a shared credential for each
member of the group. Revocation of the assigned digital
certificate may be done automatically when a user is
removed from a group through the maintenance program
without affecting the remaining members of the group.

Once the shared credentials have been defined, the parsing
and splitting process remains the same. When a file, docu-
ment or data element is to be secured, the user is prompted
for the target group to be used when securing the data. The
resulting secured data is only accessible by other members
of the target group. This functionality of the methods and
systems of the present invention may be used with any other
computer system or software platform, any may be, for
example, integrated into existing application programs or
used standalone for file security.

It is readily apparent to those of ordinary skill in the art
that any one or combination of encryption algorithms are
suitable for use in the methods and systems of the present
invention. For example, the encryption steps may, in one
embodiment, be repeated to produce a multi-layered encryp-
tion scheme. In addition, a different encryption algorithm, or
combination of encryption algorithms, may be used in repeat
encryption steps such that different encryption algorithms
are applied to the different layers of the multi-layered
encryption scheme. As such, the encryption scheme itself
may become a component of the methods of the present
invention for securing sensitive data from unauthorized use
or access.

The secure data parser may include as an internal com-
ponent, as an external component, or as both an error-
checking component. For example, in one suitable approach,

25

35

40

45

50

55

60

65

62

as portions of data are created using the secure data parser
in accordance with the present invention, to assure the
integrity of the data within a portion, a hash value is taken
at preset intervals within the portion and is appended to the
end of the interval. The hash value is a predictable and
reproducible numeric representation of the data. If any bit
within the data changes, the hash value would be different.
A scanning module (either as a stand-alone component
external to the secure data parser or as an internal compo-
nent) may then scan the portions of data generated by the
secure data parser. Each portion of data (or alternatively, less
than all portions of data according to some interval or by a
random or pseudo-random sampling) is compared to the
appended hash value or values and an action may be taken.
This action may include a report of values that match and do
not match, an alert for values that do not match, or invoking
of some external or internal program to trigger a recovery of
the data. For example, recovery of the data could be per-
formed by invoking a recovery module based on the concept
that fewer than all portions may be needed to generate
original data in accordance with the present invention.

Any other suitable integrity checking may be imple-
mented using any suitable integrity information appended
anywhere in all or a subset of data portions. Integrity
information may include any suitable information that can
be used to determine the integrity of data portions. Examples
of integrity information may include hash values computed
based on any suitable parameter (e.g., based on respective
data portions), digital signature information, message
authentication code (MAC) information, any other suitable
information, or any combination thereof.

The secure data parser of the present invention may be
used in any suitable application. Namely, the secure data
parser described herein has a variety of applications in
different areas of computing and technology. Several such
areas are discussed below. It will be understood that these
are merely illustrative in nature and that any other suitable
applications may make use of the secure data parser. It will
further be understood that the examples described are
merely illustrative embodiments that may be modified in any
suitable way in order to satisfy any suitable desires. For
example, parsing and splitting may be based on any suitable
units, such as by bits, by bytes, by kilobytes, by megabytes,
by any combination thereof, or by any other suitable unit.

The secure data parser of the present invention may be
used to implement secure physical tokens, whereby data
stored in a physical token may be required in order to access
additional data stored in another storage area. In one suitable
approach, a physical token, such as a compact USB flash
drive, a floppy disk, an optical disk, a smart card, or any
other suitable physical token, may be used to store one of at
least two portions of parsed data in accordance with the
present invention. In order to access the original data, the
USB flash drive would need to be accessed. Thus, a personal
computer holding one portion of parsed data would need to
have the USB flash drive, having the other portion of parsed
data, attached before the original data can be accessed. FIG.
26 illustrates this application. Storage area 2500 includes a
portion of parsed data 2502. Physical token 2504, having a
portion of parsed data 2506 would need to be coupled to
storage area 2500 using any suitable communications inter-
face 2508 (e.g., USB, serial, parallel, Bluetooth, IR, IEEE
1394, Ethernet, or any other suitable communications inter-
face) in order to access the original data. This is useful in a
situation where, for example, sensitive data on a computer is
left alone and subject to unauthorized access attempts. By
removing the physical token (e.g., the USB flash drive), the



US 9,465,952 B2

63

sensitive data is inaccessible. It will be understood that any
other suitable approach for using physical tokens may be
used.

The secure data parser of the present invention may be
used to implement a secure authentication system whereby
user enrollment data (e.g., passwords, private encryption
keys, fingerprint templates, biometric data or any other
suitable user enrollment data) is parsed and split using the
secure data parser. The user enrollment data may be parsed
and split whereby one or more portions are stored on a smart
card, a government Common Access Card, any suitable
physical storage device (e.g., magnetic or optical disk, USB
key drive, etc.), or any other suitable device. One or more
other portions of the parsed user enrollment data may be
stored in the system performing the authentication. This
provides an added level of security to the authentication
process (e.g., in addition to the biometric authentication
information obtained from the biometric source, the user
enrollment data must also be obtained via the appropriate
parsed and split data portion).

The secure data parser of the present invention may be
integrated into any suitable existing system in order to
provide the use of its functionality in each system’s respec-
tive environment. FIG. 27 shows a block diagram of an
illustrative system 2600, which may include software, hard-
ware, or both for implementing any suitable application.
System 2600 may be an existing system in which secure data
parser 2602 may be retrofitted as an integrated component.
Alternatively, secure data parser 2602 may be integrated into
any suitable system 2600 from, for example, its earliest
design stage. Secure data parser 2600 may be integrated at
any suitable level of system 2600. For example, secure data
parser 2602 may be integrated into system 2600 at a suffi-
ciently back-end level such that the presence of secure data
parser 2602 may be substantially transparent to an end user
of system 2600. Secure data parser 2602 may be used for
parsing and splitting data among one or more storage
devices 2604 in accordance with the present invention.
Some illustrative examples of systems having the secure
data parser integrated therein are discussed below.

The secure data parser of the present invention may be
integrated into an operating system kernel (e.g., Linux,
Unix, or any other suitable commercial or proprietary oper-
ating system). This integration may be used to protect data
at the device level whereby, for example, data that would
ordinarily be stored in one or more devices is separated into
a certain number of portions by the secure data parser
integrated into the operating system and stored among the
one or more devices. When original data is attempted to be
accessed, the appropriate software, also integrated into the
operating system, may recombine the parsed data portions
into the original data in a way that may be transparent to the
end user.

The secure data parser of the present invention may be
integrated into a volume manager or any other suitable
component of a storage system to protect local and net-
worked data storage across any or all supported platforms.
For example, with the secure data parser integrated, a
storage system may make use of the redundancy offered by
the secure data parser (i.e., which is used to implement the
feature of needing fewer than all separated portions of data
in order to reconstruct the original data) to protect against
data loss. The secure data parser also allows all data written
to storage devices, whether using redundancy or not, to be
in the form of multiple portions that are generated according
to the parsing of the present invention. When original data
is attempted to be accessed, the appropriate software, also

10

15

20

25

30

40

45

50

55

60

65

64

integrated into the volume manager or other suitable com-
ponent of the storage system, may recombine the parsed data
portions into the original data in a way that may be trans-
parent to the end user.

In one suitable approach, the secure data parser of the
present invention may be integrated into a RAID controller
(as either hardware or software). This allows for the secure
storage of data to multiple drives while maintaining fault
tolerance in case of drive failure.

The secure data parser of the present invention may be
integrated into a database in order to, for example, protect
sensitive table information. For example, in one suitable
approach, data associated with particular cells of a database
table (e.g., individual cells, one or more particular columns,
one or more particular rows, any combination thereof, or an
entire database table) may be parsed and separated accord-
ing to the present invention (e.g., where the different por-
tions are stored on one or more storage devices at one or
more locations or on a single storage device). Access to
recombine the portions in order to view the original data
may be granted by traditional authentication methods (e.g.,
username and password query).

The secure parser of the present invention may be inte-
grated in any suitable system that involves data in motion
(i.e., transfer of data from one location to another). Such
systems include, for example, email, streaming data broad-
casts, and wireless (e.g.,, WiFi) communications. With
respect to email, in one suitable approach, the secure parser
may be used to parse outgoing messages (i.e., containing
text, binary data, or both (e.g., files attached to an email
message)) and sending the different portions of the parsed
data along different paths thus creating multiple streams of
data. If any one of these streams of data is compromised, the
original message remains secure because the system may
require that more than one of the portions be combined, in
accordance with the present invention, in order to generate
the original data. In another suitable approach, the different
portions of data may be communicated along one path
sequentially so that if one portion is obtained, it may not be
sufficient to generate the original data. The different portions
arrive at the intended recipient’s location and may be
combined to generate the original data in accordance with
the present invention.

FIGS. 28 and 29 are illustrative block diagrams of such
email systems. FIG. 28 shows a sender system 2700, which
may include any suitable hardware, such as a computer
terminal, personal computer, handheld device (e.g., PDA,
Blackberry), cellular telephone, computer network, any
other suitable hardware, or any combination thereof. Sender
system 2700 is used to generate and/or store a message
2704, which may be, for example, an email message, a
binary data file (e.g., graphics, voice, video, etc.), or both.
Message 2704 is parsed and split by secure data parser 2702
in accordance with the present invention. The resultant data
portions may be communicated across one or more separate
communications paths 2706 over network 2708 (e.g., the
Internet, an intranet, a LAN, WiFi, Bluetooth, any other
suitable hard-wired or wireless communications means, or
any combination thereof) to recipient system 2710. The data
portions may be communicated parallel in time or alterna-
tively, according to any suitable time delay between the
communication of the different data portions. Recipient
system 2710 may be any suitable hardware as described
above with respect to sender system 2700. The separate data
portions carried along communications paths 2706 are
recombined at recipient system 2710 to generate the original
message or data in accordance with the present invention.



US 9,465,952 B2

65

FIG. 29 shows a sender system 2800, which may include
any suitable hardware, such as a computer terminal, personal
computer, handheld device (e.g., PDA), cellular telephone,
computer network, any other suitable hardware, or any
combination thereof. Sender system 2800 is used to generate
and/or store a message 2804, which may be, for example, an
email message, a binary data file (e.g., graphics, voice,
video, etc.), or both. Message 2804 is parsed and split by
secure data parser 2802 in accordance with the present
invention. The resultant data portions may be communicated
across a single communications paths 2806 over network
2808 (e.g., the Internet, an intranet, a LAN, WiFi, Bluetooth,
any other suitable communications means, or any combina-
tion thereof) to recipient system 2810. The data portions
may be communicated serially across communications path
2806 with respect to one another. Recipient system 2810
may be any suitable hardware as described above with
respect to sender system 2800. The separate data portions
carried along communications path 2806 are recombined at
recipient system 2810 to generate the original message or
data in accordance with the present invention.

It will be understood that the arrangement of FIGS. 28 and
29 are merely illustrative. Any other suitable arrangement
may be used. For example, in another suitable approach, the
features of the systems of FIGS. 28 and 29 may be combined
whereby the multi-path approach of FIG. 28 is used and in
which one or more of communications paths 2706 are used
to carry more than one portion of data as communications
path 2806 does in the context of FIG. 29.

The secure data parser may be integrated at any suitable
level of a data-in motion system. For example, in the context
of an email system, the secure parser may be integrated at
the user-interface level (e.g., into Microsoft® Outlook), in
which case the user may have control over the use of the
secure data parser features when using email. Alternatively,
the secure parser may be implemented in a back-end com-
ponent such as at the exchange server, in which case
messages may be automatically parsed, split, and commu-
nicated along different paths in accordance with the present
invention without any user intervention.

Similarly, in the case of streaming broadcasts of data (e.g.,
audio, video), the outgoing data may be parsed and sepa-
rated into multiple streams each containing a portion of the
parsed data. The multiple streams may be transmitted along
one or more paths and recombined at the recipient’s location
in accordance with the present invention. One of the benefits
of'this approach is that it avoids the relatively large overhead
associated with traditional encryption of data followed by
transmission of the encrypted data over a single communi-
cations channel. The secure parser of the present invention
allows data in motion to be sent in multiple parallel streams,
increasing speed and efficiency.

It will be understand that the secure data parser may be
integrated for protection of and fault tolerance of any type of
data in motion through any transport medium, including, for
example, wired, wireless, or physical. For example, voice
over Internet protocol (VoIP) applications may make use of
the secure data parser of the present invention. Wireless or
wired data transport from or to any suitable personal digital
assistant (PDA) devices such as Blackberries and Smart-
Phones may be secured using the secure data parser of the
present invention. Communications using wireless 802.11
protocols for peer to peer and hub based wireless networks,
satellite communications, point to point wireless communi-
cations, Internet client/server communications, or any other
suitable communications may involve the data in motion
capabilities of the secure data parser in accordance with the

20

40

45

66

present invention. Data communication between computer
peripheral device (e.g., printer, scanner, monitor, keyboard,
network router, biometric authentication device (e.g., fin-
gerprint scanner), or any other suitable peripheral device)
between a computer and a computer peripheral device,
between a computer peripheral device and any other suitable
device, or any combination thereof may make use of the data
in motion features of the present invention.

The data in motion features of the present invention may
also apply to physical transportation of secure shares using
for example, separate routes, vehicles, methods, any other
suitable physical transportation, or any combination thereof.
For example, physical transportation of data may take place
on digital/magnetic tapes, floppy disks, optical disks, physi-
cal tokens, USB drives, removable hard drives, consumer
electronic devices with flash memory (e.g., Apple IPODs or
other MP3 players), flash memory, any other suitable
medium used for transporting data, or any combination
thereof.

The secure data parser of the present invention may
provide security with the ability for disaster recovery.
According to the present invention, fewer than all portions
of'the separated data generated by the secure data parser may
be necessary in order to retrieve the original data. That is, out
of' m portions stored, n may be the minimum number of these
m portions necessary to retrieve the original data, where
n<=m. For example, if each of four portions is stored in a
different physical location relative to the other three por-
tions, then, if n=2 in this example, two of the locations may
be compromised whereby data is destroyed or inaccessible,
and the original data may still be retrieved from the portions
in the other two locations. Any suitable value for n or m may
be used.

In addition, the n of m feature of the present invention
may be used to create a “two man rule” whereby in order to
avoid entrusting a single individual or any other entity with
full access to what may be sensitive data, two or more
distinct entities, each with a portion of the separated data
parsed by the secure parser of the present invention may
need to agree to put their portions together in order to
retrieve the original data.

The secure data parser of the present invention may be
used to provide a group of entities with a group-wide key
that allows the group members to access particular infor-
mation authorized to be accessed by that particular group.
The group key may be one of the data portions generated by
the secure parser in accordance with the present invention
that may be required to be combined with another portion
centrally stored, for example in order to retrieve the infor-
mation sought. This feature allows for, for example, secure
collaboration among a group. It may be applied in for
example, dedicated networks, virtual private networks,
intranets, or any other suitable network.

Specific applications of this use of the secure parser
include, for example, coalition information sharing in
which, for example, multi-national friendly government
forces are given the capability to communicate operational
and otherwise sensitive data on a security level authorized to
each respective country over a single network or a dual
network (i.e., as compared to the many networks involving
relatively substantial manual processes currently used). This
capability is also applicable for companies or other organi-
zations in which information needed to be known by one or
more specific individuals (within the organization or with-
out) may be communicated over a single network without
the need to worry about unauthorized individuals viewing
the information.



US 9,465,952 B2

67

Another specific application includes a multi-level secu-
rity hierarchy for government systems. That is, the secure
parser of the present invention may provide for the ability to
operate a government system at different levels of classified
information (e.g., unclassified, classified, secret, top secret)
using a single network. If desired, more networks may be
used (e.g., a separate network for top secret), but the present
invention allows for substantially fewer than current
arrangement in which a separate network is used for each
level of classification.

It will be understood that any combination of the above
described applications of the secure parser of the present
invention may be used. For example, the group key appli-
cation can be used together with the data in motion security
application (i.e., whereby data that is communicated over a
network can only be accessed by a member of the respective
group and where, while the data is in motion, it is split
among multiple paths (or sent in sequential portions) in
accordance with the present invention).

The secure data parser of the present invention may be
integrated into any middleware application to enable appli-
cations to securely store data to different database products
or to different devices without modification to either the
applications or the database. Middleware is a general term
for any product that allows two separate and already existing
programs to communicate. For example, in one suitable
approach, middleware having the secure data parser inte-
grated, may be used to allow programs written for a par-
ticular database to communicate with other databases with-
out custom coding.

The secure data parser of the present invention may be
implemented having any combination of any suitable capa-
bilities, such as those discussed herein. In some embodi-
ments of the present invention, for example, the secure data
parser may be implemented having only certain capabilities
whereas other capabilities may be obtained through the use
of external software, hardware, or both interfaced either
directly or indirectly with the secure data parser.

FIG. 30, for example, shows an illustrative implementa-
tion of the secure data parser as secure data parser 3000.
Secure data parser 3000 may be implemented with very few
built-in capabilities. As illustrated, secure data parser 3000
may include built-in capabilities for parsing and splitting
data into portions (also referred to herein as shares) of data
using module 3002 in accordance with the present invention.
Secure data parser 3000 may also include built in capabili-
ties for performing redundancy in order to be able to
implement, for example, the m of n feature described above
(i.e., recreating the original data using fewer than all shares
of parsed and split data) using module 3004. Secure data
parser 3000 may also include share distribution capabilities
using module 3006 for placing the shares of data into buffers
from which they are sent for communication to a remote
location, for storage, etc. in accordance with the present
invention. It will be understood that any other suitable
capabilities may be built into secure data parser 3000.

Assembled data buffer 3008 may be any suitable memory
used to store the original data (although not necessarily in its
original form) that will be parsed and split by secure data
parser 3000. In a splitting operation, assembled data buffer
3008 provides input to secure data parser 3008. In a restore
operation, assembled data buffer 3008 may be used to store
the output of secure data parser 3000.

Split shares buffers 3010 may be one or more memory
modules that may be used to store the multiple shares of data
that resulted from the parsing and splitting of original data.
In a splitting operation, split shares buffers 3010 hold the

10

15

20

25

30

35

40

45

50

55

60

65

68

output of the secure data parser. In a restore operation, split
shares buffers hold the input to secure data parser 3000.

It will be understood that any other suitable arrangement
of capabilities may be built-in for secure data parser 3000.
Any additional features may be built-in and any of the
features illustrated may be removed, made more robust,
made less robust, or may otherwise be modified in any
suitable way. Buffers 3008 and 3010 are likewise merely
illustrative and may be modified, removed, or added to in
any suitable way.

Any suitable modules implemented in software, hardware
or both may be called by or may call to secure data parser
3000. If desired, even capabilities that are built into secure
data parser 3000 may be replaced by one or more external
modules. As illustrated, some external modules include
random number generator 3012, cipher feedback key gen-
erator 3014, hash algorithm 3016, any one or more types of
encryption 3018, and key management 3020. It will be
understood that these are merely illustrative external mod-
ules. Any other suitable modules may be used in addition to
or in place of those illustrated.

Cipher feedback key generator 3014 may, externally to
secure data parser 3000, generate for each secure data parser
operation, a unique key, or random number (using, for
example, random number generator 3012), to be used as a
seed value for an operation that extends an original session
key size (e.g., a value of 128, 256, 512, or 1024 bits) into a
value equal to the length of the data to be parsed and split.
Any suitable algorithm may be used for the cipher feedback
key generation, including, for example, the AES cipher
feedback key generation algorithm.

In order to facilitate integration of secure data parser 3000
and its external modules (i.e., secure data parser layer 3026)
into an application layer 3024 (e.g., email application,
database application, etc.), a wrapping layer that may make
use of, for example, API function calls may be used. Any
other suitable arrangement for facilitating integration of
secure data parser layer 3026 into application layer 3024
may be used.

FIG. 31 illustratively shows how the arrangement of FIG.
30 may be used when a write (e.g., to a storage device),
insert (e.g., in a database field), or transmit (e.g., across a
network) command is issued in application layer 3024. At
step 3100 data to be secured is identified and a call is made
to the secure data parser. The call is passed through wrapper
layer 3022 where at step 3102, wrapper layer 3022 streams
the input data identified at step 3100 into assembled data
buffer 3008. Also at step 3102, any suitable share informa-
tion, filenames, any other suitable information, or any com-
bination thereof may be stored (e.g., as information 3106 at
wrapper layer 3022). Secure data processor 3000 then parses
and splits the data it takes as input from assembled data
buffer 3008 in accordance with the present invention. It
outputs the data shares into split shares buffers 3010. At step
3104, wrapper layer 3022 obtains from stored information
3106 any suitable share information (i.e., stored by wrapper
3022 at step 3102) and share location(s) (e.g., from one or
more configuration files). Wrapper layer 3022 then writes
the output shares (obtained from split shares buffers 3010)
appropriately (e.g., written to one or more storage devices,
communicated onto a network, etc.).

FIG. 32 illustratively shows how the arrangement of FIG.
30 may be used when a read (e.g., from a storage device),
select (e.g., from a database field), or receive (e.g., from a
network) occurs. At step 3200, data to be restored is iden-
tified and a call to secure data parser 3000 is made from
application layer 3024. At step 3202, from wrapper layer



US 9,465,952 B2

69

3022, any suitable share information is obtained and share
location is determined. Wrapper layer 3022 loads the por-
tions of data identified at step 3200 into split shares buffers
3010. Secure data parser 3000 then processes these shares in
accordance with the present invention (e.g., if only three of
four shares are available, then the redundancy capabilities of
secure data parser 3000 may be used to restore the original
data using only the three shares). The restored data is then
stored in assembled data buffer 3008. At step 3204, appli-
cation layer 3022 converts the data stored in assembled data
buffer 3008 into its original data format (if necessary) and
provides the original data in its original format to application
layer 3024.

It will be understood that the parsing and splitting of
original data illustrated in FIG. 31 and the restoring of
portions of data into original data illustrated in FIG. 32 is
merely illustrative. Any other suitable processes, compo-
nents, or both may be used in addition to or in place of those
illustrated.

FIG. 33 is a block diagram of an illustrative process flow
for parsing and splitting original data into two or more
portions of data in accordance with one embodiment of the
present invention. As illustrated, the original data desired to
be parsed and split is plain text 3306 (i.e., the word “SUM-
MIT” is used as an example). It will be understood that any
other type of data may be parsed and split in accordance with
the present invention. A session key 3300 is generated. If the
length of session key 3300 is not compatible with the length
of original data 3306, then cipher feedback session key 3304
may be generated.

In one suitable approach, original data 3306 may be
encrypted prior to parsing, splitting, or both. For example, as
FIG. 33 illustrates, original data 3306 may be XORed with
any suitable value (e.g., with cipher feedback session key
3304, or with any other suitable value). It will be understood
that any other suitable encryption technique may be used in
place of or in addition to the XOR technique illustrate. It will
further be understood that although FIG. 33 is illustrated in
terms of byte by byte operations, the operation may take
place at the bit level or at any other suitable level. It will
further be understood that, if desired, there need not be any
encryption whatsoever of original data 3306.

The resultant encrypted data (or original data if no
encryption took place) is then hashed to determine how to
split the encrypted (or original) data among the output
buckets (e.g., of which there are four in the illustrated
example). In the illustrated example, the hashing takes place
by bytes and is a function of cipher feedback session key
3304. It will be understood that this is merely illustrative.
The hashing may be performed at the bit level, if desired.
The hashing may be a function of any other suitable value
besides cipher feedback session key 3304. In another suit-
able approach, hashing need not be used. Rather, any other
suitable technique for splitting data may be employed.

FIG. 34 is a block diagram of an illustrative process flow
for restoring original data 3306 from two or more parsed and
split portions of original data 3306 in accordance with one
embodiment of the present invention. The process involves
hashing the portions in reverse (i.e., to the process of FIG.
33) as a function of cipher feedback session key 3304 to
restore the encrypted original data (or original data if there
was no encryption prior to the parsing and splitting). The
encryption key may then be used to restore the original data
(i.e., in the illustrated example, cipher feedback session key
3304 is used to decrypt the XOR encryption by XORing it
with the encrypted data). This the restores original data
3306.

5

10

20

25

30

35

40

45

50

55

60

65

70

FIG. 35 shows how bit-splitting may be implemented in
the example of FIGS. 33 and 34. A hash may be used (e.g.,
as a function of the cipher feedback session key, as a
function of any other suitable value) to determine a bit value
at which to split each byte of data. It will be understood that
this is merely one illustrative way in which to implement
splitting at the bit level. Any other suitable technique may be
used.

It will be understood that any reference to hash function-
ality made herein may be made with respect to any suitable
hash algorithm. These include for example, MD5 and SHA-
1. Different hash algorithms may be used at different times
and by different components of the present invention.

After a split point has been determined in accordance with
the above illustrative procedure or through any other pro-
cedure or algorithm, a determination may be made with
regard to which data portions to append each of the left and
right segments. Any suitable algorithm may be used for
making this determination. For example, in one suitable
approach, a table of all possible distributions (e.g., in the
form of pairings of destinations for the left segment and for
the right segment) may be created, whereby a destination
share value for each of the left and right segment may be
determined by using any suitable hash function on corre-
sponding data in the session key, cipher feedback session
key, or any other suitable random or pseudo-random value,
which may be generated and extended to the size of the
original data. For example, a hash function of a correspond-
ing byte in the random or pseudo-random value may be
made. The output of the hash function is used to determine
which pairing of destinations (i.e., one for the left segment
and one for the right segment) to select from the table of all
the destination combinations. Based on this result, each
segment of the split data unit is appended to the respective
two shares indicated by the table value selected as a result
of the hash function.

Redundancy information may be appended to the data
portions in accordance with the present invention to allow
for the restoration of the original data using fewer than all
the data portions. For example, if two out of four portions
are desired to be sufficient for restoration of data, then
additional data from the shares may be accordingly
appended to each share in, for example, a round-robin
manner (e.g., where the size of the original data is 4 MB,
then share 1 gets its own shares as well as those of shares 2
and 3; share 2 gets its own share as well as those of shares
3 and 4; share 3 gets its own share as well as those of shares
4 and 1; and share 4 gets its own shares as well as those of
shares 1 and 2). Any such suitable redundancy may be used
in accordance with the present invention.

It will be understood that any other suitable parsing and
splitting approach may be used to generate portions of data
from an original data set in accordance with the present
invention. For example, parsing and splitting may be ran-
domly or pseudo-randomly processed on a bit by bit basis.
A random or pseudo-random value may be used (e.g.,
session key, cipher feedback session key, etc.) whereby for
each bit in the original data, the result of a hash function on
corresponding data in the random or pseudo-random value
may indicate to which share to append the respective bit. In
one suitable approach the random or pseudo-random value
may be generated as, or extended to, 8 times the size of the
original data so that the hash function may be performed on
a corresponding byte of the random or pseudo-random value
with respect to each bit of the original data. Any other
suitable algorithm for parsing and splitting data on a bit by
bit level may be used in accordance with the present



US 9,465,952 B2

71

invention. It will further be appreciated that redundancy data
may be appended to the data shares such as, for example, in
the manner described immediately above in accordance with
the present invention.

In one suitable approach, parsing and splitting need not be
random or pseudo-random. Rather, any suitable determin-
istic algorithm for parsing and splitting data may be used.
For example, breaking up the original data into sequential
shares may be employed as a parsing and splitting algorithm.
Another example is to parse and split the original data bit by
bit, appending each respective bit to the data shares sequen-
tially in a round-robin manner. It will further be appreciated
that redundancy data may be appended to the data shares
such as, for example, in the manner described above in
accordance with the present invention.

In one embodiment of the present invention, after the
secure data parser generates a number of portions of original
data, in order to restore the original data, certain one or more
of the generated portions may be mandatory. For example,
if one of the portions is used as an authentication share (e.g.,
saved on a physical token device), and if the fault tolerance
feature of the secure data parser is being used (i.e., where
fewer than all portions are necessary to restore the original
data), then even though the secure data parser may have
access to a sufficient number of portions of the original data
in order to restore the original data, it may require the
authentication share stored on the physical token device
before it restores the original data. It will be understood that
any number and types of particular shares may be required
based on, for example, application, type of data, user, any
other suitable factors, or any combination thereof.

In one suitable approach, the secure data parser or some
external component to the secure data parser may encrypt
one or more portions of the original data. The encrypted
portions may be required to be provided and decrypted in
order to restore the original data. The different encrypted
portions may be encrypted with different encryption keys.
For example, this feature may be used to implement a more
secure “two man rule” whereby a first user would need to
have a particular share encrypted using a first encryption and
a second user would need to have a particular share
encrypted using a second encryption key. In order to access
the original data, both users would need to have their
respective encryption keys and provide their respective
portions of the original data. In one suitable approach, a
public key may be used to encrypt one or more data portions
that may be a mandatory share required to restore the
original data. A private key may then be used to decrypt the
share in order to be used to restore to the original data.

Any such suitable paradigm may be used that makes use
of mandatory shares where fewer than all shares are needed
to restore original data.

In one suitable embodiment of the present invention,
distribution of data into a finite number of shares of data may
be processed randomly or pseudo-randomly such that from
a statistical perspective, the probability that any particular
share of data receives a particular unit of data is equal to the
probability that any one of the remaining shares will receive
the unit of data. As a result, each share of data will have an
approximately equal amount of data bits.

According to another embodiment of the present inven-
tion, each of the finite number of shares of data need not
have an equal probability of receiving units of data from the
parsing and splitting of the original data. Rather certain one
or more shares may have a higher or lower probability than
the remaining shares. As a result, certain shares may be
larger or smaller in terms of bit size relative to other shares.

10

15

20

25

30

40

45

50

55

60

72

For example, in a two-share scenario, one share may have a
1% probability of receiving a unit of data whereas the
second share has a 99% probability. It should follow, there-
fore that once the data units have been distributed by the
secure data parser among the two share, the first share
should have approximately 1% of the data and the second
share 99%. Any suitable probabilities may be used in
accordance with the present invention.

It will be understood that the secure data parser may be
programmed to distribute data to shares according to an
exact (or near exact) percentage as well. For example, the
secure data parser may be programmed to distribute 80% of
data to a first share and the remaining 20% of data to a
second share.

According to another embodiment of the present inven-
tion, the secure data parser may generate data shares, one or
more of which have predefined sizes. For example, the
secure data parser may split original data into data portions
where one of the portions is exactly 256 bits. In one suitable
approach, if it is not possible to generate a data portion
having the requisite size, then the secure data parser may pad
the portion to make it the correct size. Any suitable size may
be used.

In one suitable approach, the size of a data portion may be
the size of an encryption key, a splitting key, any other
suitable key, or any other suitable data element.

As previously discussed, the secure data parser may use
keys in the parsing and splitting of data. For purposes of
clarity and brevity, these keys shall be referred to herein as
“splitting keys.” For example, the Session Master Key,
previously introduced, is one type of splitting key. Also, as
previously discussed, splitting keys may be secured within
shares of data generated by the secure data parser. Any
suitable algorithms for securing splitting keys may be used
to secure them among the shares of data. For example, the
Shamir algorithm may be used to secure the splitting keys
whereby information that may be used to reconstruct a
splitting key is generated and appended to the shares of data.
Any other such suitable algorithm may be used in accor-
dance with the present invention.

Similarly, any suitable encryption keys may be secured
within one or more shares of data according to any suitable
algorithm such as the Shamir algorithm. For example,
encryption keys used to encrypt a data set prior to parsing
and splitting, encryption keys used to encrypt a data portions
after parsing and splitting, or both may be secured using, for
example, the Shamir algorithm or any other suitable algo-
rithm.

According to one embodiment of the present invention, an
All or Nothing Transform (AoNT), such as a Full Package
Transform, may be used to further secure data by transform-
ing splitting keys, encryption keys, any other suitable data
elements, or any combination thereof. For example, an
encryption key used to encrypt a data set prior to parsing and
splitting in accordance with the present invention may be
transformed by an AoNT algorithm. The transformed
encryption key may then be distributed among the data
shares according to, for example, the Shamir algorithm or
any other suitable algorithm. In order to reconstruct the
encryption key, the encrypted data set must be restored (e.g.,
not necessarily using all the data shares if redundancy was
used in accordance with the present invention) in order to
access the necessary information regarding the transforma-
tion in accordance with AoNTs as is well known by one
skilled in the art. When the original encryption key is
retrieved, it may be used to decrypt the encrypted data set to
retrieve the original data set. It will be understood that the



US 9,465,952 B2

73

fault tolerance features of the present invention may be used
in conjunction with the AoNT feature. Namely, redundancy
data may be included in the data portions such that fewer
than all data portions are necessary to restore the encrypted
data set.

It will be understood that the AoNT may be applied to
encryption keys used to encrypt the data portions following
parsing and splitting either in place of or in addition to the
encryption and AoNT of the respective encryption key
corresponding to the data set prior to parsing and splitting.
Likewise, AoNT may be applied to splitting keys.

In one embodiment of the present invention, encryption
keys, splitting keys, or both as used in accordance with the
present invention may be further encrypted using, for
example, a workgroup key in order to provide an extra level
of security to a secured data set.

In one embodiment of the present invention, an audit
module may be provided that tracks whenever the secure
data parser is invoked to split data.

FIG. 36 illustrates possible options 3600 for using the
components of the secure data parser in accordance with the
invention. Each combination of options is outlined below
and labeled with the appropriate step numbers from FIG. 36.
The secure data parser may be modular in nature, allowing
for any known algorithm to be used within each of the
function blocks shown in FIG. 36. For example, other key
splitting (e.g., secret sharing) algorithms such as Blakely
may be used in place of Shamir, or the AES encryption could
be replaced by other known encryption algorithms such as
Triple DES. The labels shown in the example of FIG. 36
merely depict one possible combination of algorithms for
use in one embodiment of the invention. It should be
understood that any suitable algorithm or combination of
algorithms may be used in place of the labeled algorithms.

1) 3610, 3612, 3614, 3615, 3616, 3617, 3618, 3619

Using previously encrypted data at step 3610, the data
may be eventually split into a predefined number of shares.
If the split algorithm requires a key, a split encryption key
may be generated at step 3612 using a cryptographically
secure pseudo-random number generator. The split encryp-
tion key may optionally be transformed using an All or
Nothing Transform (AoNT) into a transform split key at step
3614 before being key split to the predefined number of
shares with fault tolerance at step 3615. The data may then
be split into the predefined number of shares at step 3616. A
fault tolerant scheme may be used at step 3617 to allow for
regeneration of the data from less than the total number of
shares. Once the shares are created, authentication/integrity
information may be embedded into the shares at step 3618.
Each share may be optionally post-encrypted at step 3619.

2) 3111, 3612, 3614, 3615, 3616, 3617, 3618, 3619

In some embodiments, the input data may be encrypted
using an encryption key provided by a user or an external
system. The external key is provided at step 3611. For
example, the key may be provided from an external key
store. If the split algorithm requires a key, the split encryp-
tion key may be generated using a cryptographically secure
pseudo-random number generator at step 3612. The split key
may optionally be transformed using an All or Nothing
Transform (AoNT) into a transform split encryption key at
step 3614 before being key split to the predefined number of
shares with fault tolerance at step 3615. The data is then split
to a predefined number of shares at step 3616. A fault
tolerant scheme may be used at step 3617 to allow for
regeneration of the data from less than the total number of
shares. Once the shares are created, authentication/integrity

20

25

30

40

45

74

information may be embedded into the shares at step 3618.
Each share may be optionally post-encrypted at step 3619.

3)3612, 3613, 3614,3615,3612,3614,3615, 3616, 3617,
3618, 3619

In some embodiments, an encryption key may be gener-
ated using a cryptographically secure pseudo-random num-
ber generator at step 3612 to transform the data. Encryption
of the data using the generated encryption key may occur at
step 3613. The encryption key may optionally be trans-
formed using an All or Nothing Transform (AoNT) into a
transform encryption key at step 3614. The transform
encryption key and/or generated encryption key may then be
split into the predefined number of shares with fault toler-
ance at step 3615. If the split algorithm requires a key,
generation of the split encryption key using a cryptographi-
cally secure pseudo-random number generator may occur at
step 3612. The split key may optionally be transformed
using an All or Nothing Transform (AoNT) into a transform
split encryption key at step 3614 before being key split to the
predefined number of shares with fault tolerance at step
3615. The data may then be split into a predefined number
of shares at step 3616. A fault tolerant scheme may be used
at step 3617 to allow for regeneration of the data from less
than the total number of shares. Once the shares are created,
authentication/integrity information will be embedded into
the shares at step 3618. Each share may then be optionally
post-encrypted at step 3619.

4) 3612, 3614, 3615, 3616, 3617, 3618, 3619

In some embodiments, the data may be split into a
predefined number of shares. If the split algorithm requires
a key, generation of the split encryption key using a cryp-
tographically secure pseudo-random number generator may
occur at step 3612. The split key may optionally be trans-
formed using an All or Nothing Transform (AoNT) into a
transformed split key at step 3614 before being key split into
the predefined number of shares with fault tolerance at step
3615. The data may then be split at step 3616. A fault
tolerant scheme may be used at step 3617 to allow for
regeneration of the data from less than the total number of
shares. Once the shares are created, authentication/integrity
information may be embedded into the shares at step 3618.
Each share may be optionally post-encrypted at step 3619.

Although the above four combinations of options are
preferably used in some embodiments of the invention, any
other suitable combinations of features, steps, or options
may be used with the secure data parser in other embodi-
ments.

The secure data parser may offer flexible data protection
by facilitating physical separation. Data may be first
encrypted, then split into shares with “m of n” fault toler-
ance. This allows for regeneration of the original informa-
tion when less than the total number of shares is available.
For example, some shares may be lost or corrupted in
transmission. The lost or corrupted shares may be recreated
from fault tolerance or integrity information appended to the
shares, as discussed in more detail below.

In order to create the shares, a number of keys are
optionally utilized by the secure data parser. These keys may
include one or more of the following:

Pre-encryption key: When pre-encryption of the shares is
selected, an external key may be passed to the secure data
parser. This key may be generated and stored externally in
a key store (or other location) and may be used to optionally
encrypt data prior to data splitting.

Split encryption key: This key may be generated inter-
nally and used by the secure data parser to encrypt the data



US 9,465,952 B2

75

prior to splitting. This key may then be stored securely
within the shares using a key split algorithm.

Split session key: This key is not used with an encryption
algorithm; rather, it may be used to key the data partitioning
algorithms when random splitting is selected. When a ran-
dom split is used, a split session key may be generated
internally and used by the secure data parser to partition the
data into shares. This key may be stored securely within the
shares using a key splitting algorithm.

Post encryption key: When post encryption of the shares
is selected, an external key may be passed to the secure data
parser and used to post encrypt the individual shares. This
key may be generated and stored externally in a key store or
other suitable location.

In some embodiments, when data is secured using the
secure data parser in this way, the information may only be
reassembled provided that all of the required shares and
external encryption keys are present.

FIG. 37 shows illustrative overview process 3700 for
using the secure data parser of the present invention in some
embodiments. As described above, two well-suited func-
tions for secure data parser 3706 may include encryption
3702 and backup 3704. As such, secure data parser 3706
may be integrated with a RAID or backup system or a
hardware or software encryption engine in some embodi-
ments.

The primary key processes associated with secure data
parser 3706 may include one or more of pre-encryption
process 3708, encrypt/transform process 3710, key secure
process 3712, parse/distribute process 3714, fault tolerance
process 3716, share authentication process 3716, and post-
encryption process 3720. These processes may be executed
in several suitable orders or combinations, as detailed in
FIG. 36. The combination and order of processes used may
depend on the particular application or use, the level of
security desired, whether optional pre-encryption, post-en-
cryption, or both, are desired, the redundancy desired, the
capabilities or performance of an underlying or integrated
system, or any other suitable factor or combination of
factors.

The output of illustrative process 3700 may be two or
more shares 3722. As described above, data may be distrib-
uted to each of these shares randomly (or pseudo-randomly)
in some embodiments. In other embodiments, a determin-
istic algorithm (or some suitable combination of random,
pseudo-random, and deterministic algorithms) may be used.

In addition to the individual protection of information
assets, there is sometimes a requirement to share informa-
tion among different groups of users or communities of
interest. It may then be necessary to either control access to
the individual shares within that group of users or to share
credentials among those users that would only allow mem-
bers of the group to reassemble the shares. To this end, a
workgroup key may be deployed to group members in some
embodiments of the invention. The workgroup key should
be protected and kept confidential, as compromise of the
workgroup key may potentially allow those outside the
group to access information. Some systems and methods for
workgroup key deployment and protection are discussed
below.

The workgroup key concept allows for enhanced protec-
tion of information assets by encrypting key information
stored within the shares. Once this operation is performed,
even if all required shares and external keys are discovered,
an attacker has no hope of recreating the information with-
out access to the workgroup key.

10

15

20

25

30

35

40

45

50

55

60

65

76

FIG. 38 shows illustrative block diagram 3800 for storing
key and data components within the shares. In the example
of diagram 3800, the optional pre-encrypt and post-encrypt
steps are omitted, although these steps may be included in
other embodiments.

The simplified process to split the data includes encrypt-
ing the data using encryption key 3804 at encryption stage
3802. Portions of encryption key 3804 may then be split and
stored within shares 3810 in accordance with the present
invention. Portions of split encryption key 3806 may also be
stored within shares 3810. Using the split encryption key,
data 3808 is then split and stored in shares 3810.

In order to restore the data, split encryption key 3806 may
be retrieved and restored in accordance with the present
invention. The split operation may then be reversed to
restore the ciphertext. Encryption key 3804 may also be
retrieved and restored, and the ciphertext may then be
decrypted using the encryption key.

When a workgroup key is utilized, the above process may
be changed slightly to protect the encryption key with the
workgroup key. The encryption key may then be encrypted
with the workgroup key prior to being stored within the
shares. The modified steps are shown in illustrative block
diagram 3900 of FIG. 39.

The simplified process to split the data using a workgroup
key includes first encrypting the data using the encryption
key at stage 3902. The encryption key may then be
encrypted with the workgroup key at stage 3904. The
encryption key encrypted with the workgroup key may then
be split into portions and stored with shares 3912. Split key
3908 may also be split and stored in shares 3912. Finally,
portions of data 3910 are split and stored in shares 3912
using split key 3908.

In order to restore the data, the split key may be retrieved
and restored in accordance with the present invention. The
split operation may then be reversed to restore the ciphertext
in accordance with the present invention. The encryption
key (which was encrypted with the workgroup key) may be
retrieved and restored. The encryption key may then be
decrypted using the workgroup key. Finally, the ciphertext
may be decrypted using the encryption key.

There are several secure methods for deploying and
protecting workgroup keys. The selection of which method
to use for a particular application depends on a number of
factors. These factors may include security level required,
cost, convenience, and the number of users in the work-
group. Some commonly used techniques used in some
embodiments are provided below:

Hardware-based Key Storage

Hardware-based solutions generally provide the strongest
guarantees for the security of encryption/decryption keys in
an encryption system. Examples of hardware-based storage
solutions include tamper-resistant key token devices which
store keys in a portable device (e.g., smartcard/dongle), or
non-portable key storage peripherals. These devices are
designed to prevent easy duplication of key material by
unauthorized parties. Keys may be generated by a trusted
authority and distributed to users, or generated within the
hardware. Additionally, many key storage systems provide
for multi-factor authentication, where use of the keys
requires access both a physical object (token) and a pass-
phrase or biometric.

Software-Based Key Storage

While dedicated hardware-based storage may be desirable
for high-security deployments or applications, other deploy-
ments may elect to store keys directly on local hardware
(e.g., disks, RAM or non-volatile RAM stores such as USB



US 9,465,952 B2

77

drives). This provides a lower level of protection against
insider attacks, or in instances where an attacker is able to
directly access the encryption machine.

To secure keys on disk, software-based key management
often protects keys by storing them in encrypted form under
a key derived from a combination of other authentication
metrics, including: passwords and passphrases, presence of
other keys (e.g., from a hardware-based solution), biomet-
rics, or any suitable combination of the foregoing. The level
of security provided by such techniques may range from the
relatively weak key protection mechanisms provided by
some operating systems (e.g., MS Windows and Linux), to
more robust solutions implemented using multi-factor
authentication.

The secure data parser of the present invention may be
advantageously used in a number of applications and tech-
nologies. For example, email system, RAID systems, video
broadcasting systems, database systems, tape backup sys-
tems, or any other suitable system may have the secure data
parser integrated at any suitable level. As previously dis-
cussed, it will be understand that the secure data parser may
also be integrated for protection and fault tolerance of any
type of data in motion through any transport medium,
including, for example, wired, wireless, or physical transport
mediums. As one example, voice over Internet protocol
(VoIP) applications may make use of the secure data parser
of the present invention to solve problems relating to echoes
and delays that are commonly found in VoIP. The need for
network retry on dropped packets may be eliminated by
using fault tolerance, which guarantees packet delivery even
with the loss of a predetermined number of shares. Packets
of data (e.g., network packets) may also be efficiently split
and restored “on-the-fly” with minimal delay and buffering,
resulting in a comprehensive solution for various types of
data in motion. The secure data parser may act on network
data packets, network voice packets, file system data blocks,
or any other suitable unit of information. In addition to being
integrated with a VoIP application, the secure data parser
may be integrated with a file-sharing application (e.g., a
peer-to-peer file-sharing application), a video broadcasting
application, an electronic voting or polling application
(which may implement an electronic voting protocol and
blind signatures, such as the Sensus protocol), an email
application, or any other network application that may
require or desire secure communication.

In some embodiments, support for network data in motion
may be provided by the secure data parser of the present
invention in two distinct phases—a header generation phase
and a data partitioning phase. Simplified header generation
process 4000 and simplified data partitioning process 4010
are shown in FIGS. 40A and 40B, respectively. One or both
of these processes may be performed on network packets,
file system blocks, or any other suitable information.

In some embodiments, header generation process 4000
may be performed one time at the initiation of a network
packet stream. At step 4002, a random (or pseudo-random)
split encryption key, K, may be generated. The split encryp-
tion key, K, may then be optionally encrypted (e.g., using the
workgroup key described above) at AES key wrap step
4004. Although an AES key wrap may be used in some
embodiments, any suitable key encryption or key wrap
algorithm may be used in other embodiments. AES key wrap
step 4004 may operate on the entire split encryption key, K,
or the split encryption key may be parsed into several blocks
(e.g., 64-bit blocks). AES key wrap step 4004 may then
operate on blocks of the split encryption key, if desired.

15

20

30

40

45

55

78

At step 4006, a secret sharing algorithm (e.g., Shamir)
may be used to split the split encryption key, K, into key
shares. Each key share may then be embedded into one of
the output shares (e.g., in the share headers). Finally, a share
integrity block and (optionally) a post-authentication tag
(e.g., MAC) may be appended to the header block of each
share. Each header block may be designed to fit within a
single data packet.

After header generation is complete (e.g., using simplified
header generation process 4000), the secure data parser may
enter the data partitioning phase using simplified data split-
ting process 4010. Each incoming data packet or data block
in the stream is encrypted using the split encryption key, K,
at step 4012. At step 4014, share integrity information (e.g.,
a hash H) may be computed on the resulting ciphertext from
step 4012. For example, a SHA-256 hash may be computed.
At step 4106, the data packet or data block may then be
partitioned into two or more data shares using one of the data
splitting algorithms described above in accordance with the
present invention. In some embodiments, the data packet or
data block may be split so that each data share contains a
substantially random distribution of the encrypted data
packet or data block. The integrity information (e.g., hash H)
may then be appended to each data share. An optional
post-authentication tag (e.g., MAC) may also be computed
and appended to each data share in some embodiments.

Each data share may include metadata, which may be
necessary to permit correct reconstruction of the data blocks
or data packets. This information may be included in the
share header. The metadata may include such information as
cryptographic key shares, key identities, share nonces, sig-
natures/MAC values, and integrity blocks. In order to maxi-
mize bandwidth efficiency, the metadata may be stored in a
compact binary format.

For example, in some embodiments, the share header
includes a cleartext header chunk, which is not encrypted
and may include such elements as the Shamir key share,
per-session nonce, per-share nonce, key identifiers (e.g., a
workgroup key identifier and a post-authentication key
identifier). The share header may also include an encrypted
header chunk, which is encrypted with the split encryption
key. An integrity header chunk, which may include integrity
checks for any number of the previous blocks (e.g., the
previous two blocks) may also be included in the header.
Any other suitable values or information may also be
included in the share header.

As shown in illustrative share format 4100 of FIG. 41,
header block 4102 may be associated with two or more
output blocks 4104. Each header block, such as header block
4102, may be designed to fit within a single network data
packet. In some embodiments, after header block 4102 is
transmitted from a first location to a second location, the
output blocks may then be transmitted. Alternatively, header
block 4102 and output blocks 4104 may be transmitted at the
same time in parallel. The transmission may occur over one
or more similar or dissimilar communications paths.

Each output block may include data portion 4106 and
integrity/authenticity portion 4108. As described above,
each data share may be secured using a share integrity
portion including share integrity information (e.g., a SHA-
256 hash) of the encrypted, pre-partitioned data. To verify
the integrity of the outputs blocks at recovery time, the
secure data parser may compare the share integrity blocks of
each share and then invert the split algorithm. The hash of
the recovered data may then be verified against the share
hash.



US 9,465,952 B2

79

As previously mentioned, in some embodiments of the
present invention, the secure date parser may be used in
conjunction with a tape backup system. For example, an
individual tape may be used as a node (i.e., portion/share) in
accordance with the present invention. Any other suitable
arrangement may be used. For example, a tape library or
subsystem, which is made up of two or more tapes, may be
treated as a single node.

Redundancy may also be used with the tapes in accor-
dance with the present invention. For example, if a data set
is apportioned among four tapes (i.e., portions/shares), then
two of the four tapes may be necessary in order to restore the
original data. It will be understood that any suitable number
of nodes (i.e., less than the total number of nodes) may be
required to restore the original data in accordance with the
redundancy features of the present invention. This substan-
tially increases the probability for restoration when one or
more tapes expire.

Each tape may also be digitally protected with a SHA-
256, HMAC hash value, any other suitable value, or any
combination thereof to insure against tampering. Should any
data on the tape or the hash value change, that tape would
not be a candidate for restoration and any minimum required
number of tapes of the remaining tapes would be used to
restore the data.

In conventional tape backup systems, when a user calls
for data to be written to or read from a tape, the tape
management system (TMS) presents a number that corre-
sponds to a physical tape mount. This tape mount points to
a physical drive where the data will be mounted. The tape is
loaded either by a human tape operator or by a tape robot in
a tape silo.

Under the present invention, the physical tape mount may
be considered a logical mount point that points to a number
of physical tapes. This not only increases the data capacity
but also improves the performance because of the parallel-
ism.

For increased performance the tape nodes may be or may
include a RAID array of disks used for storing tape images.
This allows for high-speed restoration because the data may
always be available in the protected RAID.

In any of the foregoing embodiments, the data to be
secured may be distributed into a plurality of shares using
deterministic, probabilistic, or both deterministic and proba-
bilistic data distribution techniques. In order to prevent an
attacker from beginning a crypto attack on any cipher block,
the bits from cipher blocks may be deterministically distrib-
uted to the shares. For example, the distribution may be
performed using the BitSegment routine, or the BlockSeg-
ment routine may be modified to allow for distribution of
portions of blocks to multiple shares. This strategy may
defend against an attacker who has accumulated less than
“M” shares.

In some embodiments, a keyed secret sharing routine may
be employed using keyed information dispersal (e.g.,
through the use of a keyed information dispersal algorithm
or “IDA”). The key for the keyed IDA may also be protected
by one or more external workgroup keys, one or more shared
keys, or any combination of workgroup keys and shared
keys. In this way, a multi-factor secret sharing scheme may
be employed. To reconstruct the data, at least “M” shares
plus the workgroup key(s) (and/or shared key(s)) may be
required in some embodiments. The IDA (or the key for the
IDA) may also be driven into the encryption process. For
example, the transform may be driven into the clear text
(e.g., during the pre-processing layer before encrypting) and
may further protect the clear text before it is encrypted.

10

15

20

25

30

35

40

45

50

55

60

65

80

For example, in some embodiments, keyed information
dispersal is used to distribute unique portions of data from
a data set into two or more shares. The keyed information
dispersal may use a session key to first encrypt the data set,
to distribute unique portions of encrypted data from the data
set into two or more encrypted data set shares, or both
encrypt the data set and distribute unique portions of
encrypted data from the data set into the two or more
encrypted data set shares. For example, to distribute unique
portions of the data set or encrypted data set, secret sharing
(or the methods described above, such as BitSegment or
BlockSegment) may be used. The session key may then
optionally be transformed (for example, using a full package
transform or AoNT) and shared using, for example, secret
sharing (or the keyed information dispersal and session key).

In some embodiments, the session key may be encrypted
using a shared key (e.g., a workgroup key) before unique
portions of the key are distributed or shared into two or more
session key shares. Two or more user shares may then be
formed by combining at least one encrypted data set share
and at least one session key share. In forming a user share,
in some embodiments, the at least one session key share may
be interleaved into an encrypted data set share. In other
embodiments, the at least one session key share may be
inserted into an encrypted data set share at a location based
at least in part on the shared workgroup key. For example,
keyed information dispersal may be used to distribute each
session key share into a unique encrypted data set share to
form a user share. Interleaving or inserting a session key
share into an encrypted data set share at a location based at
least in part on the shared workgroup may provide increased
security in the face of cryptographic attacks. In other
embodiments, one or more session key shares may be
appended to the beginning or end of an encrypted data set
share to form a user share. The collection of user shares may
then be stored separately on at least one data depository. The
data depository or depositories may be located in the same
physical location (for example, on the same magnetic or tape
storage device) or geographically separated (for example, on
physically separated servers in different geographic loca-
tions). To reconstruct the original data set, an authorized set
of user shares and the shared workgroup key may be
required.

Keyed information dispersal may be secure even in the
face of key-retrieval oracles. For example, take a blockci-
pher E and a key-retrieval oracle for E that takes a list (X,
Y,), ..., (X, Y, of input/output pairs to the blockcipher,
and returns a key K that is consistent with the input/output
examples (e.g., =E (X)) for all i). The oracle may return the
distinguished value L if there is no consistent key. This
oracle may model a cryptanalytic attack that may recover a
key from a list of input/output examples.

Standard blockcipher-based schemes may fail in the pres-
ence of a key-retrieval oracle. For example, CBC encryption
or the CBC MAC may become completely insecure in the
presence of a key-retrieval oracle.

If TP is an IDA scheme and IT"° is an encryption
scheme given by a mode of operation of some) blockcipher
E, then (IT"?4, TI¥™%) provides security in the face of a
key-retrieval attack if the two schemes, when combined with
an arbitrary perfect secret-sharing scheme (PSS) as per HK1
or HK2, achieve the robust computational secret sharing
(RCSS) goal, but in the model in which the adversary has a
key-retrieval oracle.

If there exists an IDA scheme I and an encryption
scheme IT#"° such that the pair of schemes provides security
in the face of key-retrieval attacks, then one way to achieve



US 9,465,952 B2

81

this pair may be to have a “clever” IDA and a “dumb”
encryption scheme. Another way to achieve this pair of
schemes may be to have a “dumb” IDA and a “clever”
encryption scheme.

To illustrate the use of a clever IDA and a dumb encryp-
tion scheme, in some embodiments, the encryption scheme
may be CBC and the IDA may have a “weak privacy”
property. The weak privacy property means, for example,
that if the input to the IDA is a random sequence of blocks
M=M, ... M, and the adversary obtains shares from a
non-authorized collection, then there is some block index 1
such that it is infeasible for the adversary to compute M,.
Such a weakly-private IDA may be built by first applying to
Man information-theoretic AoNT, such as Stinson’s AoNT,
and then applying a simple IDA such as BlockSegment, or
a bit-efficient IDA like Rabin’s scheme (e.g., Reed-Solomon
encoding).

To illustrate the use of a dumb IDA and a clever encryp-
tion scheme, in some embodiments, one may use a CBC
mode with double encryption instead of single encryption.
Now any IDA may be used, even replication. Having the
key-retrieval oracle for the blockcipher would be useless to
an adversary, as the adversary will be denied any singly-
enciphered input/output example.

While a clever IDA has value, it may also be inessential
in some contexts, in the sense that the “smarts” needed to
provide security in the face of a key-retrieval attack could
have been “pushed” elsewhere. For example, in some
embodiments, no matter how smart the IDA, and for what-
ever goal is trying to be achieved with the IDA in the context
of HK1/HK2, the smarts may be pushed out of the IDA and
into the encryption scheme, being left with a fixed and dumb
IDA.

Based on the above, in some embodiments, a “universally
sound” clever IDA IT"”4 may be used. For example, an IDA
is provided such that, for all encryption schemes IT*", the
pair (IT™#, IT¥7°) universally provides security in the face of
key-retrieval attacks.

In some embodiments, an encryption scheme is provided
that is RCSS secure in the face of a key-retrieval oracle. The
scheme may be integrated with HK1/HK2, with any IDA, to
achieve security in the face of key-retrieval. Using the new
scheme may be particularly useful, for example, for making
symmetric encryption schemes more secure against key-
retrieval attacks.

As mentioned above, classical secret-sharing notions are
typically unkeyed. Thus, a secret is broken into shares, or
reconstructed from them, in a way that requires neither the
dealer nor the party reconstructing the secret to hold any
kind of symmetric or asymmetric key. The secure data parser
described herein, however, is optionally keyed. The dealer
may provide a symmetric key that, if used for data sharing,
may be required for data recovery. The secure data parser
may use the symmetric key to disperse or distribute unique
portions of the message to be secured into two or more
shares.

The shared key may enable multi-factor or two-factor
secret-sharing (2FSS). The adversary may then be required
to navigate through two fundamentally different types of
security in order to break the security mechanism. For
example, to violate the secret-sharing goals, the adversary
(1) may need to obtain the shares of an authorized set of
players, and (2) may need to obtain a secret key that it should
not be able to obtain (or break the cryptographic mechanism
that is keyed by that key).

In some embodiments, a new set of additional require-
ments is added to the RCSS goal. The additional require-

10

15

20

25

30

35

40

45

50

55

60

65

82

ments may include the “second factor”—key possession.
These additional requirements may be added without dimin-
ishing the original set of requirements. One set of require-
ments may relate to the adversary’s inability to break the
scheme if it knows the secret key but does not obtain enough
shares (e.g., the classical or first-factor requirements) while
the other set of requirements may relate to the adversary’s
inability to break the scheme if it does have the secret key
but manages to get hold of all of the shares (e.g., the new or
second-factor requirements).

In some embodiments, there may be two second-factor
requirements: a privacy requirement and an authenticity
requirement. In the privacy requirement, a game may be
involved where a secret key K and a bit b are selected by the
environment. The adversary now supplies a pair of equal-
length messages in the domain of the secret-sharing scheme,
M,” and M, *. The environment computes the shares of M,”
to get a vector of shares, S;=(S, [1], ..., S, [n], and it gives
the shares S, (all of them) to the adversary. The adversary
may now choose another pair of messages (M,°, M,") and
everything proceeds as before, using the same key K and
hidden bit b. The adversary’s job is to output the bit b' that
it believes to be b. The adversary privacy advantage is one
less than twice the probability that b=b'. This games captures
the notion that, even learning all the shares, the adversary
still cannot learn anything about the shared secret if it lacks
the secret key.

In the authenticity requirement, a game may be involved
where the environment chooses a secret key K and uses this
in the subsequent calls to Share and Recover. Share and
Recover may have their syntax modified, in some embodi-
ments, to reflect the presence of this key. Then the adversary
makes Share requests for whatever messages M, . .., M,
it chooses in the domain of the secret-sharing scheme. In
response to each Share request it gets the corresponding
n-vector of shares, S;, . . ., S_. The adversary’s aim is to
forge a new plaintext; it wins if it outputs a vector of shares
S' such that, when fed to the Recover algorithm, results in
something not in {M,, . . ., M_}. This is an “integrity of
plaintext” notion.

There are two approaches to achieve multi-factor secret-
sharing. The first is a generic approach—generic in the sense
of using an underlying (R)CSS scheme in a black-box way.
An authenticated-encryption scheme is used to encrypt the
message that is to be CSS-shared, and then the resulting
ciphertext may be shared out, for example, using a secret
sharing algorithm, such as Blakely or Shamir.

A potentially more efficient approach is to allow the
shared key to be the workgroup key. Namely, (1) the
randomly generated session key of the (R)CSS scheme may
be encrypted using the shared key, and (2) the encryption
scheme applied to the message (e.g., the file) may be
replaced by an authenticated-encryption scheme. This
approach may entail only a minimal degradation in perfor-
mance

The secure data parser of the present invention may be
used to implement a cloud computing security solution.
Cloud computing is network-based computing, storage, or
both where computing and storage resources may be pro-
vided to computer systems and other devices over a network.
Cloud computing resources are generally accessed over the
Internet, but cloud computing may be performed over any
suitable public or private network. Cloud computing may
provide a level of abstraction between computing resources
and their underlying hardware components (e.g., servers,
storage devices, networks), enabling remote access to a pool
of computing resources. These cloud computing resources



US 9,465,952 B2

83

may be collectively referred to as the “cloud.” Cloud com-
puting may be used to provide dynamically scalable and
often virtualized resources as a service over the Internet or
any other suitable network or combination of networks.

Security is an important concern with cloud computing
because private data may be transferred over public net-
works and may be processed and stored within publicly
accessible or shared systems. The secure data parser may be
used to protect cloud computing resources and the data
being communicated between the cloud and an end-user or
device. For example, the secure data parser may be used to
secure data storage in the cloud, data-in-motion in the cloud,
network access in the cloud, data services in the cloud,
access to high-performance computing resources in the
cloud, and any other operations in the cloud.

FIG. 42 is an illustrative block diagram of a cloud
computing security solution. System 4200, including secure
data parser 4210, is coupled to cloud 4250 including cloud
resources 4260. System 4200 may include any suitable
hardware, such as a computer terminal, personal computer,
handheld device (e.g., PDA, Blackberry, smart phone, tablet
device), cellular telephone, computer network, any other
suitable hardware, or any combination thereof. Secure data
parser 4210 may be integrated at any suitable level of system
4200. For example, secure data parser 4210 may be inte-
grated into the hardware and/or software of system 4200 at
a sufficiently back-end level such that the presence of secure
data parser 4210 may be substantially transparent to an end
user of system 4200. The integration of the secure data
parser within suitable systems is described in greater detail
above with respect to, for example, FIGS. 27 and 28. Cloud
4250 includes multiple illustrative cloud resources 4260
including, data storage resources 4260a and 4260e, data
service resources 42605 and 4260g, network access control
resources 4260¢ and 4260/, and high performing computing
resources 42604 and 4260f. Each of these resources will be
described in greater detail below with respect to FIGS.
43-47. These cloud computing resources are merely illus-
trative. It should be understood that any suitable number and
type of cloud computing resources may be accessible from
system 4200.

One advantage of cloud computing is that the user of
system 4200 may be able to access multiple cloud comput-
ing resources without having to invest in dedicated computer
hardware. The user may have the ability to dynamically
control the number and type of cloud computing resources
accessible to system 4200. For example, system 4200 may
be provided with on-demand storage resources in the cloud
having capacities that are dynamically adjustable based on
current needs. In some embodiments, one or more software
applications executed on system 4200 may couple system
4200 to cloud resources 4260. For example, an Internet web
browser may be used to couple system 4200 to one or more
cloud resources 4260 over the Internet. In some embodi-
ments, hardware integrated with or connected to system
4200 may couple system 4200 to cloud resources 4260. In
both embodiments, secure data parser 4210 may secure
communications with cloud resources 4260 and/or the data
stored within cloud resources 4260. The coupling of cloud
resources 4260 to system 4200 may be transparent to system
4200 or the users of system 4200 such that cloud resources
4260 appear to system 4200 as local hardware resources.
Furthermore shared cloud resources 4260 may appear to
system 4200 as dedicated hardware resources.

Secure data parser 4210 may encrypt and split data such
that no forensically discernable data will traverse or will be
stored within the cloud. The underlying hardware compo-

10

15

20

25

30

35

40

45

50

55

60

65

84

nents of the cloud (e.g., servers, storage devices, networks)
may be geographically disbursed to ensure continuity of
cloud resources in the event of a power grid failure, weather
event or other man-made or natural event. As a result, even
if some of the hardware components within the cloud suffer
a catastrophic failure, the cloud resources may still be
accessible. Cloud resources 4260 may be designed with
redundancies to provide uninterrupted service in spite of one
or more hardware failures.

FIG. 43 is an illustrative block diagram of a cloud
computing security solution for securing data in motion (i.e.,
during the transfer of data from one location to another)
through the cloud. FIG. 43 shows a sender system 4300,
which may include any suitable hardware, such as a com-
puter terminal, personal computer, handheld device (e.g.,
PDA, Blackberry), cellular telephone, computer network,
any other suitable hardware, or any combination thereof.
Sender system 4300 is used to generate and/or store data,
which may be, for example, an email message, a binary data
file (e.g., graphics, voice, video, etc.), or both. The data is
parsed and split by secure data parser 4310 in accordance
with the present invention. The resultant data portions may
be communicated over cloud 4350 to recipient system 4370.
Recipient system 4370 may be any suitable hardware as
described above with respect to sender system 4300. The
separate data portions may be recombined at recipient
system 4370 to generate the original data in accordance with
the present invention. When traveling through cloud 4310
the data portions may be communicated across one or more
communications paths including the Internet and/or one or
more intranets, LANs, WiFi, Bluetooth, any other suitable
hard-wired or wireless communications networks, or any
combination thereof. As described above with respect to
FIGS. 28 and 29, the original data is secured by the secure
data parser even if some of the data portions are compro-
mised.

FIG. 44 is an illustrative block diagram of a cloud
computing security solution for securing data services in the
cloud. In this embodiment, a user 4400 may provide data
services 4420 to an end user 4440 over cloud 4430. Secure
parser 4410 may secure the data services in accordance with
the disclosed embodiments. Data service 4420 may be any
suitable application or software service that is accessible
over cloud 4430. For example, data service 4420 may be a
web-based application implemented as part of a service-
oriented architecture (SOA) system. Data service 4420 may
be stored and executed on one or more systems within cloud
4430. The abstraction provided by this cloud computing
implementation allows data service 4420 to appear as a
virtualized resource to end user 4440 irrespective of the
underlying hardware resources. Secure parser 4410 may
secure data in motion between data service 4420 and end
user 4440. Secure parser 4410 may also secure stored data
associated with data service 4420. The stored data associated
with data service 4420 may be secured within the system or
systems implementing data service 4420 and/or within sepa-
rate secure cloud data storage devices, which will be
described in greater detail below. Although data service
4420 and other portions of FIG. 44 are shown outside of
cloud 4430, it should be understood that any of these
elements may be incorporated within cloud 4430.

FIG. 45 is an illustrative block diagram of a cloud
computing security solution for securing data storage
resources in the cloud. System 4500, including secure data
parser 4510, is coupled to cloud 4550 which includes data
storage resources 4560. Secure data parser 4510 may be
used for parsing and splitting data among one or more data



US 9,465,952 B2

85

storage resources 4560. Each data storage resource 4560
may represent a one or more networked storage devices.
These storage devices may be assigned to a single user/
system of may be shared by multiple users/systems. The
security provided by secure data parser 4510 may allow data
from multiple users/systems to securely co-exist on the same
storage devices. The abstraction provided by this cloud
computing implementation allows data storage resources
4560 to appear as a single virtualized storage resource to
system 4500 irrespective of the number and location of the
underlying data storage resources. When data is written to or
read from data storage resources 4560, secure data parser
4510 may split and recombine the data in a way that may be
transparent to the end user. In this manner, an end user may
be able to access to dynamically scalable storage on demand

Data storage in the cloud using secure data parser 4510 is
secure, resilient, persistent, and private. Secure data parser
4510 secures the data by ensuring that no forensically
discernable data traverses the cloud or is stored in a single
storage device. The cloud storage system is resilient because
of the redundancy offered by the secure data parser (i.e.,
fewer than all separated portions of data are needed to
reconstruct the original data). Storing the separated portions
within multiple storage devices and/or within multiple data
storage resources 4560 ensures that the data may be recon-
structed even if one or more of the storage devices fail or are
inaccessible. The cloud storage system is persistent because
loss of a storage device within data storage resources 4560
has no impact on the end user. If one storage device fails, the
data portions that were stored within that storage device may
be rebuilt at another storage device without having to expose
the data. Furthermore, the storage resources 4560 (or even
the multiple networked storage devices that make up a data
storage resource 4560) may be geographically dispersed to
limit the risk of multiple failures. Finally, the data stored in
the cloud may be kept private using one or more keys. As
described above, data may be assigned to a user or a
community of interest by unique keys such that only that
user or community will have access to the data.

Data storage in the cloud using the secure data parser may
also provide a performance boost over traditional local or
networked storage. The throughput of the system may be
improved by writing and reading separate portions of data to
multiple storage devices in parallel. This increase in
throughput may allow slower, less expensive storage devices
to be used without substantially affecting the overall speed
of the storage system.

FIG. 46 is an illustrative block diagram for securing
network access using a secure data parser in accordance with
the disclosed embodiments. Secure data parser 4610 may be
used with network access control block 4620 to control
access to network resources. As illustrated in FIG. 46,
network access control block 4620 may be used to provide
secure network communications between user 4600 and end
user 4640. In some embodiments, network access control
block 4620 may provide secure network access for one or
more network resources in the cloud (e.g., cloud 4250, FIG.
42). Authorized users (e.g., user 4600 and end user 4640)
may be provided with group-wide keys that provide the
users with the ability to securely communicate over a
network and/or to access secure network resources. The
secured network resources will not respond unless the
proper credentials (e.g., group keys) are presented. This may
prevent common networking attacks such as, for example,
denial of service attacks, port scanning attacks, man-in-the-
middle attacks, and playback attacks.

10

15

20

25

30

35

40

45

55

60

65

86

In addition to providing security for data at rest stored
within a communications network and security for data in
motion through the communications network, network
access control block 4620 may be used with secure data
parser 4620 to share information among different groups of
users or communities of interest. Collaboration groups may
be set up to participate as secure communities of interest on
secure virtual networks. A workgroup key may be deployed
to group members to provide members of the group access
to the network and networked resources. Systems and meth-
ods for workgroup key deployments have been discussed
above.

FIG. 47 is an illustrative block diagram for securing
access to high performance computing resources using a
secure data parser in accordance with the disclosed embodi-
ments. Secure data parser 4710 may be used to provide
secure access to high performance computing resources
4720. As illustrated in FIG. 47 end user 4740 may access
high performance computing resources 4720. In some
embodiments, secure data parser 4710 may provide secure
access to high performance resources in the cloud (e.g.,
cloud 4250, FIG. 42). High performance computing
resources may be large computer servers or server farms.
These high performance computing resources may provide
flexible, scalable, and configurable data services and data
storage services to users.

In accordance with another embodiment, a secure data
parser may be used to secure data access using virtual
machines. A hypervisor, also referred to as a virtual machine
monitor (VMM) is a computer system that allows multiple
virtual machines to run on a single host computer. FIG. 48
shows an illustrative block diagram including hypervisor
4800 and a series of virtual machines 4810 running on
hypervisor 4800. Hypervisor 4800 runs a fundamental oper-
ating system (e.g., Microsoft Windows® and Linux). Virtual
machines 4810 may be firewalled off from the fundamental
operating system such that attacks (e.g., viruses, worms,
hacks, etc.) on the fundamental operating system do not
affect virtual machines 4810. One or more secure data
parsers may be integrated with hypervisor 4800 to secure
virtual machines 4810. In particular, using the secure data
parser, virtual machines 4810 may securely communicate
with one or more servers or end users. In accordance with
this embodiment, secure data access may be deployed to
users by providing the users with secure virtual machine
images. This embodiment may allow for on demand infor-
mation sharing while assuring confidentiality and integrity
of the data.

FIGS. 49 and 50 show alternative embodiments for inte-
grating a secure data parser with a hypervisor. In FIG. 49,
secure data parser 4930 is implemented above hypervisor
4920. For example, secure data parser 4930 may be imple-
mented as a software application or module operating on
hypervisor 4920. In some embodiments, secure data parser
4930 may be implemented by a virtual machine running on
hypervisor 4920. A virtual machine running on hypervisor
4920 may securely couple to server 4940 and end users 4950
using secure data parser 4930. In FIG. 50, secure data parser
5030 is implemented below hypervisor 5020. For example,
secure data parser 5030 may be implemented within the
hardware of hypervisor 5020. The virtual machine running
on hypervisor 5020 may securely communicate with server
5040 and end users 5050 using secure data parser 5030.

In accordance with another embodiment, the secure data
parser may be used to secure orthogonal division multiplex-
ing (OFDM) communications channels. OFDM is a multi-
plexing scheme that is used for wideband digital commu-



US 9,465,952 B2

87

nication. Broadband wireless standards (e.g., WiMAX and
LTE) and broadband over power line (BPL) use OFDM.
OFDM is unique because all adjacent channels are truly
orthogonal. This eliminates crosstalk, cancellation, and
induction of noise. Currently, in these OFDM standards, data
is transmitted across a single OFDM communications chan-
nel. The secure data parser may secure OFDM communi-
cations by splitting data amongst multiple OFDM commu-
nications channels. As described above, splitting data
amongst multiple data channels using the secure data parser
secures the data because only a portion of the data is
transmitted over each channel. As an additional benefit, the
secure data parser may simultaneously transmit multiple
data portions on multiple data channels. These simultaneous
transmissions may increase the effective bandwidth of the
data transmission. Additionally or alternatively, the secure
data parser may transmit the same data portions on multiple
data channels. This redundant transmission technique may
increase transmission reliability. FIG. 51 is an illustrative
block diagram for securing an OFDM communications
network. As illustrated in FIG. 51 end user 5110 may use
secure data parser 5120 to send data over OFDM network
5140 to end user 5150. OFDM network 5140 may be a
broadband over wireless network, a broadband over power
line network, or any other suitable OFDM network.

In accordance with some other embodiments, the secure
data parser may be used to protect critical infrastructure
controls including, for example, the power grid. Internet
Protocol version 6 (IPv6) is the next-generation Internet
Protocol. IPv6 has a larger address space than the current
Internet Protocol. When implemented, IPv6 will allow more
devices to be directly accessed over the Internet. It is
important that the controls of critical infrastructure be
restricted to limit access to authorized individuals. As
described above, the secure data parser may limit access to
network resources to authorized users and groups. Critical
systems may be protected using the “two man rule” whereby
at least two users would need to provide their respective
keys to access the critical systems. FIG. 52 is an illustrative
block diagram for securing the power grid. As illustrated in
FIG. 52 user 5210 may use secure data parser 5220 to
provide secure access to power grid 5240 for end user end
user 5250.

In some embodiments, power grid systems may be
coupled to the Internet using broadband over power line
networks to eliminate network cabling and associated equip-
ment of typical communications networks. Coupling power
grid systems to the Internet may enable smart grid technolo-
gies that allow for more efficient use of power by reporting
usage in real time. As another benefit, high powered com-
puting resources and/or data storage facilities may be
installed at Internet connected power monitoring facilities.
These resources may provide reliable storage and processing
nodes for protecting data in the cloud.

Data storage providers may offer data storage capabilities
to multiple client systems (referred to herein as “tenants”).
In order to keep different tenants’ data separate, conven-
tional data storage providers isolate each tenants data in
different physical storage devices, different memory parti-
tions, or different virtualized storage environments. These
conventional systems are often highly inefficient in their use
of storage space, and leave tenants’ stored data vulnerable to
attack. FIG. 53 is a flow diagram 5300 of a process of
transmitting data that may be used to provide a multi-tenant
data storage system that addresses the inadequacies of
conventional storage by improving security and allowing
tenant data to be more efficiently distributed among storage

10

15

20

25

30

35

40

45

50

55

60

88

devices and locations. Improved remote storage may
improve the ability to securely deploy and access applica-
tions and data that are not located on a user’s premises,
reducing operational overhead and increasing resilience of
business operations. The steps of flow diagram 5300 are
shown as proceeding sequentially for ease of explanation;
the steps may be performed in any order, and may be
performed in parallel. These steps may be performed by any
one or more computer chips, processors, accelerators,
blades, platforms or other processing or computing environ-
ments.

At step 5302, a first data set may be received from a first
data source. The first data source may be a particular tenant,
a particular client storage device, a particular client network,
a particular user on a client system, a data feed, or any other
source from which data may be transmitted. At step 5304, a
second data set may be received from a second data source
different from the first data source. The first and second data
sources may be different types of data sources (e.g., a client
storage device and a data feed) or they may be the same type
of data source (e.g., two different users of a client system).
The first and second data sources may be unrelated data
sources (e.g., sources from two different organizations or
users).

At step 5306, the first data set may be encrypted with a
first key. Any of the encryption techniques described herein,
or any technique otherwise known, may be used at step
5304. At step 5306, the second data set may be encrypted
with a second key different from the first key. The first and
second keys may be first and second workgroup keys, for
example. A client equipped with the first key may not be able
to decrypt the encrypted second data set, and a client
equipped with the second key may not be able to decrypt the
encrypted first data set. In some implementations of the
process of FIG. 53, the first data set is encrypted with the
first key at a first server and the second data set is encrypted
with the second key at a second server different from the first
server.

At step 5310, a first plurality of shares may be generated.
Each of the first plurality of shares may contain a distribu-
tion of data from the encrypted first data set (per step 5306).
Shares may be generated at step 5306 by any of the share
generation techniques described herein, including parsing at
the bit level. At step 5312, a second plurality of shares may
be generated. Each of the second plurality of shares may
contain a distribution of data from the encrypted second data
set (per step 5308). The encrypting steps 5306 and 5308 and
the generating steps 5310 and 5312 may be performed in
accordance with any of the processes described herein, and
in any order. The encryption of the first data set and
generation of the first plurality of shares may be performed
in accordance with one set of processes, while the encryp-
tion of the second data set and generation of the second
plurality of shares may be performed in accordance with a
second set of processes. In some implementations, access to
the first key and a threshold number of the first plurality of
shares are necessary to restore the first data set, and access
to the second key and a threshold number of the second
plurality of shares are necessary to restore the second data
set. In particular, the first data set may be reconstructed from
the first plurality of shares using the first key, but the first
data set may not be reconstructed from the first plurality of
shares with the second key, and vice versa.

At step 5314, at least one share of the first plurality of
shares and at least one share of the second plurality of shares
may be transmitted to and stored in a memory device. The
transmission may take place over a network link or by any



US 9,465,952 B2

89

data transmission technique, and may also include further
processing by additional components. In some implementa-
tions, the transmission is for storage in one or more shared
memory devices. The shared memory devices may include
any memory device described herein or otherwise known,
such as a disk RAID or any type of distributed or cloud
storage system. [0540] In some implementations, at least
one share of the first plurality of shares and at least one share
of the second plurality of shares are transmitted to be stored
contiguously in the first shared memory device. In some
implementations, at least two of the first plurality of shares
and at least two of the second plurality of shares may be
transmitted at step 5314. These shares may be transmitted
over a network link for storage in one or more different
shared memory devices. In particular, step 5314 may include
transmitting some of the first plurality of shares and some of
the second plurality of shares for storage in a second shared
memory device different from the first shared memory
device. Redundant data may be included in the transmission
of data from servers to storage networks for additional data
resilience. For example, if two or more shares of a plurality
of shares are transmitted at step 5314, the two or more shares
may contain some overlapping, repeated or redundant infor-
mation. In implementations that include a first shared
memory device and a second shared memory device, at least
one of the first plurality of shares may be transmitted for
storage on both the first shared memory device and the
second shared memory device. Data resilience may be
further improved by distributing the replicated data to geo-
graphically remote storage devices.

A multi-tenant storage system that utilizes the process of
transmitting data illustrated in flow diagram 5300 of FIG. 53
(such as the systems illustrated in FIGS. 54-57, discussed
below) may provide a number of advantages. First, such a
system may be implemented with fewer hardware and
software components that are required to keep different
tenants’ data separate in conventional storage systems. By
securing tenants’ data at the server, some implementations
of the multi-tenant storage systems disclosed herein need not
require the use of VLANs and switching networks to keep
different tenants’ data separate. Additionally, the storage at
the back-end need not be partitioned (virtually or physi-
cally), which may improve the efficiency of data storage,
increase the availability of data memory, and shrink the size
of the data storage systems that need to be maintained
(thereby reducing the chance of component failure).
Because a tenant’s data is secured prior to storage, using the
encryption and share generation techniques described
herein, and is not stored “whole,” data may be stored
contiguously or interspersed with another tenant’s data
without compromising security.

FIGS. 54-57 depict multi-tenant storage systems that may
be configured to implement the process of flow diagram
5300 of FIG. 53. FIG. 54 depicts multi-tenant storage system
5400 which includes four tenants 5402, 5404, 5406 and
5408, with four respective client networks 5410, 5412, 5414
and 5416 and four respective servers 5418, 5420, 5422 and
5424. Each of servers 5418, 5420, 5422 and 5424 may be
associated with a workgroup key (keys 5440, 5442, 5444
and 5446, respectively) that may be used to encrypt the data
transmitted to the server from its respectively client net-
work. Servers 5418, 5420, 5422 and 5424 may represent
dedicated servers. Servers 5418, 5420, 5422 and 5424 may
transmit shares to storage network 5434, which may then
transmit shares to distributed storage 5426, 5428, 5430 and
5432 (each of which may store data secured with multiple
keys, such as keys 5440, 5442, 5444, 5446).

10

15

20

25

30

35

40

45

50

55

60

65

90

In some implementations of multi-tenant storage systems,
the first and second servers are blade servers (also referred
to as “blades”). FIG. 55 depicts multi-tenant storage system
5500 which includes four tenants, 5502, 5504, 5506 and
5508, with four respective client networks 5510, 5512, 5514
and 5514 and one blade server 5520 that may contain
multiple blades. Blade server 5520 may be associated with
a number of keys, such as keys 5540, 5542, 5544, 5546, that
may be used to secure data (e.g., to encrypt data from any
of client networks 5510, 5512, 5514 and 5516). The first and
second servers may be blades in the same enclosure (and
thus may be part of a single “blade system”), or blades in
different blade enclosures. Blade server 5520 may transmit
shares to storage network 5522, which may then transmit
shares to distributed storage 5526, 5528, 5530 and 5532
(each of which may store data secured with multiple keys,
such as keys 5540, 5542, 5544, 5546).

In some implementations, the first and second servers
may be separate servers in a virtual environment, such as
virtual machines configured as servers and running on one or
more blades. An example of such an arrangement is shown
in FIG. 56, which depicts multi-tenant storage system 5600
with three tenants 5602, 5604 and 5606, and a blade server
5620 running a virtual environment 5610 that includes
virtual machines 5612, 5614 and 5616. Keys 5640, 5642 and
5644 may be associated with the respective tenants 5702,
5704 and 5706, as well as with the respective virtual
machines 5612, 5614 and 5616. Blade server 5620 may
transmit shares to distributed storage 5626, 5628, 5630 and
5632 (each of which may store data secured with multiple
keys, such as keys 5640, 5642, and 5644). These keys may
provide protection of data transmitted from tenant to blade
and protection of data within each virtual machine. A virtual
machine configured as a server may handle data associated
with two or more different keys, and a blade system may
contain multiple virtual machines that handle data associated
with a single key. Other configurations of servers, virtual
machines and workgroup keys may be used. In some imple-
mentations, one blade in a blade system may be configured
as a storage blade that includes data and routines that may
be used for secure processing and storage. For example, a
storage blade may store workgroup keys. Other blades in the
blade system (or outside the blade system) may communi-
cate with the configured storage blade. In another example,
a separate appliance may be coupled to a blade and may
store workgroup keys or other security information.

As discussed above with reference to step 5314 of FIG.
53, in a multi-tenant storage system, shares associated with
two different data sets may be distributed over two or more
different storage networks. FIG. 57 depicts multi-tenant
storage system 5700 with four tenants 5702, 5704, 5706 and
5708, four respective client networks 5710, 5712, 5714 and
5716, respective servers 5718, 5728, 5722 and 5724 (each
with an associated key 5740, 5742, 5744 and 5746, respec-
tively), and two storage networks 5734 and 5736, which
then transmit shares to distributed storage 5726, 5728, 5730
and 5732 (each of which may store data secured with
multiple keys, such as keys 5430, 5432, 5434, 5436). When
multi-tenant storage system 5700 is configured to implement
the process of flow diagram 5300 of FIG. 53, at least one
share of the first plurality of shares and at least one share of
the second plurality of shares may be transmitted to storage
network 5734, and at least one share of the first plurality of
shares and at least one share of the second plurality of shares
may be transmitted to storage network 5736.

FIG. 58 is a flow diagram 5800 of a process of providing
access to secured data that may be used to provide an



US 9,465,952 B2

91

event-based secure collaborative work environment includ-
ing distributed data processing and sharing. The process
illustrated in FIG. 58 may provide security and resiliency at
the Infrastructure as a Service (IAAS) level by operating at
the data layer of a computing environment, and may allow
for cryptographic compartmentalization of data rather than
separation via hardware or software partitions and switches.
The steps of flow diagram 5800 are shown as proceeding
sequentially for ease of explanation; the steps may be
performed in any order, and may be performed in parallel.
These steps may be performed by any one or more computer
chips, processors, accelerators, blades, platforms or other
processing or computing environments.

At step 5802, a first data set may be encrypted using a first
key. At step 5804, a first plurality of shares may be gener-
ated, in which each of the first plurality of shares contains a
distribution of data from the encrypted first data set. The
encryption and share generation steps 5802 and 5804 may be
performed in accordance with any of the encryption and
share generation techniques described herein. In some
implementations, each of the first plurality of shares may
include a distribution of data from the encrypted first data set
and the first key. At step 5806, the first plurality of shares
may be transmitted to at least one memory device for
storage. The transmission of the first plurality of shares may
be performed in accordance with any of the techniques
described above with reference to step 5314 of the flow
diagram 5300 of FIG. 53, or any other data transmission
technique. In some implementations, the at least one
memory device may be a public or private network storage
device.

At step 5808, a first client may be provided access to a
second key. In some implementations, the second key con-
tains identical data to that in the first key. In some imple-
mentations, the second key contains different data from that
in the first key, but is related to the first key. For example,
the first and second keys may be an asymmetric pair used in
an asymmetric key encryption technique. In asymmetric key
encryption techniques, a key that is used to encrypt a
message for a client (referred to as the “public key”) may not
the same as a key that is used by the client to decrypt the
message (referred to as the “private key”). The public key
may be distributed to anyone who wishes to communicate
with the client, while the private key may be known only to
the client. A message encrypted with the client’s public key
can not be decrypted with the public key; instead, the private
key is required. Many examples of asymmetric key algo-
rithms are known in the art, such as Diffie-Hellman, DSS,
and RSA, among others.

At step 5810, the first client may be provided with a
virtual machine that indicates the first plurality of shares
stored on the at least one memory device. In some imple-
mentations, the virtual machine may include a file system
with the second key. The virtual machine may provide the
first client with the capability to retrieve the first plurality of
shares from the at least one memory device and reconstruct
the first data set using the second key. For example, a virtual
machine configured with the second key may retrieve the
first plurality of shares. In some implementations, the second
key may be stored in a network-attached memory device,
and the first client may be provided access to the network-
attached memory device in order to access the second key.

In some implementations, access to the second key may
be revoked from the first client, for example, once a prede-
termined period of time has elapsed from when the first
client was provided with access to the second key. For
example, the virtual machines may “expire” after the pre-

10

15

20

25

30

35

40

45

50

55

60

65

92

determined period of time or access to a location in which
the keys are stored may be cut off. Such implementations
may be useful for applications in which a subscriber pays for
a set amount of time to access a stored resource, or a set
number of access operations.

In some implementations of the process of flow diagram
5800, a second data set may be encrypted using a third key
different from the first key. A second plurality of shares may
be generated, in which each of the second plurality of shares
contains a distribution of data from the encrypted second
data set, and the second plurality of shares may be trans-
mitted to the at least one memory device for storage. A
second client, different from the first client, may be provided
with access to a fourth key, and may also be provided with
a virtual machine that indicates the second plurality of
shares stored on the at least one memory device. Using the
fourth key, the second client may be provided with the
capability to retrieve the second plurality of shares from the
at least one memory device and reconstruct the second data
set.

FIGS. 59 and 60 depict secure collaborative work envi-
ronments that may be configured to implement the process
of flow diagram 5800 of FIG. 58. FIG. 59 depicts secure
collaborative work environment 5900, which includes two
host clients 5902 and 5904, each of which may secure data
with one or more keys (such as keys 5940 and 5942). Data
may be transmitted from host clients 5902 and 5904 to host
server 5910. The transmitted data may be secured by one or
more of keys 5940 and 5942, or the data may be secured at
host server 5910 with one or more of keys 5940 and 5942.
Host server 5910 may then transmit the secured data (e.g.,
a plurality of shares based on an encrypted data set, as
discussed above with reference to steps 5802-5806) to one
or more storage locations, such as distributed storage 5916,
5918, 5920 and 5922. Guest clients 5906 and 5908 are
provided with access to keys 5940 and 5942, respectively.
Guest servers 5912 and 5914 are configured to provide
virtual machines to guest clients 5906 and 5908, respec-
tively. The virtual machines may be located at respective
guest servers 5912 and 5914, or may be pushed to guest
clients 5906 and 5908. Guest clients 5906 and 5908 may use
keys 5940 and 5942, respectively, to access data from any of
distributed storages 5916, 5918, 5920 and 5922 that is
secured with the matching key 5940 or 5942. Different data
sets may be secured with keys 5940 and 5942 and stored in
distributed storages 5916, 5918, 5920 and 5922. These
different data sets may be retrieved by different guest clients
with access to the correct key of keys 5940 and 5942; access
to key 5940 enables retrieval of data associated with key
5940, while access to key 5942 enables retrieval of data
associated with key 5942.

FIG. 60 depicts secure collaborative work environment
6000, which includes two public data sources 6002 and 6010
and three private data sources 6004, 6006 and 6008. These
data sources may include, for example, sensor data or
analytic data, which may only be accessed by trusted or
authorized parties. As is described in detail below, the secure
collaborative work environment 6000 represents a flexible
and powerful architecture for data sharing and collaboration
that uses the data security and distribution techniques
described herein and provides appropriate access to the
secured data to servers and clients with different access
privileges.

In FIG. 60, four different keys 6072, 6074, 6076 and 6078
are used to secure and control access to data. Different
clients and servers are associated with different keys that
control communications between components in environ-



US 9,465,952 B2

93

ment 6000. For example, because client 6060 may be
associated with key 6072, client 6060 may access data from
public data source 6002 that is secured with key 6072 via
server 6022 (also associated with key 6072). Server 6022
may also be in communication with server 6024, which may
be associated with key 6072. In turn, server 6024 may be in
communication with private data source 6006 and private
data source 6008. Thus client 6060 may be able to access
data secured with key 6072 from public data source 6002 (by
way of server 6022), private data source 6004, private data
source 6006 and private data source 6008 (by way of server
6024). Additionally, client 6060 may access data secured
with key 6072 that is stored in distributed storage 6050 or
distributed storage 6052 by way of server 6022, 6044 and
6046, all of which are associated with key 6072. Client 6066
may also be associated with key 6072 and may thereby
access the same resources to which client 6060 has access by
way of server 6032 and server 6046, both of which are
associated with key 6072.

In the configuration shown in FIG. 60, no clients have
access to data secured with key 6076, although servers 6044,
6042, 6040, 6038 and 6026 are all associated with key 6076.
Data secured with key 6076 may also be stored in distributed
storage 6050 and distributed storage 6052. In order for a
client to access data secured with key 6076, that client and
any intervening servers must be associated with key 6076 or
a related key (e.g., a related key in an asymmetric pair). A
client, server, or other component may become associated
with key 6046 (or a related key) by receiving access to the
key through the process discussed above with reference to
FIG. 58.

Client 6062 may be associated with key 6078. Association
with key 6078 may allow client 6062 to access data secured
with key 6078 from distributed storage 6050 or distributed
storage 6052 via server 6046 (which is also associated with
key 6078) and through storage network 6148. Server 6044,
also associated with key 6078, may access data secured with
key 6078 from distributed storage 6050 or distributed stor-
age 6052 via server 6046. Additionally, server 6026, also
associated with key 6078, may access data secured with key
6078 from private data source 6008 or public data source
6010. Servers 6028 and 6030 (also associated with key
6078) may also access data secured with key 6078 from
private data source 6008 or public data source 6010.

Client 6064 may have access to key 6074 and may thereby
access data secured with key 6074 from distributed storage
6050 or distributed storage 6052 via server 6046 (also
associated with key 6074) and storage network 6148. Client
6064 may also access data secured with key 6074 from
private data source 6004, private data source 6006 and
private data source 6008 via server 6024, server 6036, server
6034 and server 6046.

Although some applications of the secure data parser are
described above, it should be clearly understood that the
present invention may be integrated with any network
application in order to increase security, fault-tolerance,
anonymity, or any suitable combination of the foregoing.

Additionally, other combinations, additions, substitutions
and modifications will be apparent to the skilled artisan in
view of the disclosure herein.

What is claimed is:

1. A method of providing access to secured data, com-
prising:

encrypting a first data set using a first key;

generating a first plurality of shares, wherein each of the

first plurality of shares comprises a distribution of data
from the encrypted first data set and the first key;

5

10

15

20

25

30

40

45

55

60

65

94

transmitting the first plurality of shares to at least one
memory device for storage;
providing, to a first client, access to a second key, wherein
the first key contains different data than the second key;
and
providing, to the first client, a virtual machine that indi-
cates the first plurality of shares stored on the at least
one memory device, wherein the first client is provided
with the capability to retrieve the first plurality of
shares from the at least one memory device and recon-
struct the first data set using the second key.
2. The method of claim 1, wherein the first and second
keys are an asymmetric key pair.
3. The method of claim 1, further comprising:
storing the second key in a network-attached memory
device;
wherein providing, to the first client, access to the second
key comprises providing, to the first client, access to
the network-attached memory device.
4. The method of claim 1, further comprising:
revoking, from the first client, access to the second key.
5. The method of claim 4, wherein the revoking occurs a
predetermined period of time after providing, to the first
client, access to the second key.
6. The method of claim 1, further comprising:
encrypting a second data set using a third key different
from the first key;
generating a second plurality of shares, wherein each of
the second plurality of shares contains a distribution
of data from the encrypted second data set;
transmitting the second plurality of shares to the at least
one memory device for storage;
providing, to a second client different from the first
client, access to a fourth key;
providing, to the second client, a virtual machine that
indicates the second plurality of shares stored on the
at least one memory device, wherein the second
client is provided with the capability to retrieve the
second plurality of shares from the at least one
memory device and reconstruct the second data set
using the fourth key.
7. The method of claim 6, wherein the at least one
memory device is part of a multi-tenant data storage system.
8. A system for providing access to secured data, com-
prising:
at least one processing device;
a first client; and
at least one memory device;
wherein the at least one processing device is configured
to:
encrypt a first data set using a first key;
generate a first plurality of shares, wherein each of the
first plurality of shares comprises a distribution of
data from the encrypted first data set and the first
key;
transmit the first plurality of shares to the at least one
memory device for storage;
provide, to the first client, access to a second key,
wherein the first key contains different data than the
second key; and
provide, to the first client, a virtual machine that
indicates the first plurality of shares stored on the at
least one memory device, wherein the first client is
provided with the capability to retrieve the first
plurality of shares from the at least one memory
device and reconstruct the first data set using the
second key.



US 9,465,952 B2

95

9. The system of claim 8, wherein the first and second
keys are an asymmetric key pair.

10. The system of claim 8, further comprising:

a network-attached memory device;

wherein the at least one processing device is further

configured to:

store the second key in a network-attached memory
device;

wherein providing, to the first client, access to the
second key comprises providing, to the first client,
access to the network-attached memory device.

11. The system of claim 8, wherein the at least one
processing device is further configured to revoke, from the
first client, access to the second key.

12. The system of claim 11, wherein the at least one
processing device is configured to revoke, from the first
client, access to the second key a predetermined period of
time after providing, to the first client, access to the second
key.

5

10

15

96

13. The system of claim 8, wherein the at least one
processing device is further configured to:
encrypt a second data set using a third key different from
the first key;
generate a second plurality of shares, wherein each of the
second plurality of shares contains a distribution of data
from the encrypted second data set;
transmit the second plurality of shares to the at least one
memory device for storage;
provide, to a second client different from the first client,
access to a fourth key;
provide, to the second client, a virtual machine that
indicates the second plurality of shares stored on the at
least one memory device, wherein the second client is
provided with the capability to retrieve the second
plurality of shares from the at least one memory device
and reconstruct the second data set using the fourth key.
14. The system of claim 8, wherein the at least one
memory device is part of a multi-tenant data storage system.

#* #* #* #* #*



